Panorama

Open edX® analytics reimagined by Aulasneo
Who we are

Esteban Etcheverry
esteban@aulasneo.com

Andrés Gonzalez
andres@aulasneo.com

https://aulasneo.com/en

* Compared to similar systems based on traditional webapp architectures
What is Panorama

• A serverless approach to Open edX® analytics
Why Panorama?

Thanks to its fully serverless architecture, Panorama is:

- **Faster to implement**: up in a few minutes.
- **Simpler**: no code, no Open edX code change, no application to install.
- **More scalable**: worldwide integration of multiple Open edX instances.
- **More flexible**: easily integrates with external datasources.
- **More controllable**: granular control to data access.
- **More customizable**: easily create your own reports.
- **Smarter**: use ML to augment data.
- **More durable**: mostly independent of Open edX releases.
- **Safer**: it doesn’t require open ports or APIs for data extraction.
- **More secure**: control access with IAM.
- **More reliable**: based on a serverless architecture.
- **More efficient**: it doesn’t load heavily the Open edX instances.
- **Easier to maintain**: no OS, no dependencies, no infrastructure.
- **Cheaper**: it’s cost model is based on use.

Compared to similar systems based on traditional webapp architectures
Auslaneo Panorama is entirely based on AWS serverless components, without any EC2 instance nor relational databases.
Data gathering

- Design principles:
 - Do not touch codebase
 - Do not load CPU or memory
 - Do not use APIs or open ports

- Data comes from three sources in each instance:
 - MySQL: structured student and course data
 - MongoDB: modulestore (course definition)
 - Tracking logs: events

- These sources are queried by simple cronjobs
- Queries are kept simple, in order not to load the db engine. No filters, no joins, no calculations.
- Incremental data is uploaded to S3 buckets
- Data is compressed to reduce bw
- Data is encrypted in S3
Data pre-processing

- Design principles:
 - Keep data as pure as possible, as close to the end user as can be

- Tracking log data needs some pre-processing:
 - Some events are not well formed JSON records
 - URL events are not categorized
 - Course and block ids extraction
 - Event data structure improvement
Data extraction and transformation

- AWS Glue jobs extract and transform data
- Triggers are based on fixed schedules
- Data transformation and ML algorithms can be applied here
Data lake

- Transformed data is stored in a S3 data lake
- Parquet format
 - Huge datasets (Apache Spark, Hive, Hadoop)
 - Semi-structured
 - S3 storage
 - Data is partitioned to improve performance and lower cost
 - Partition on LMS URL allows analytics across instances
 - Partition on date allows processing of tracking log files
- Data catalogs store schema information
- AWS Glue crawlers update the schema and create partitions
Data querying

- Data in Parquet format is queried using AWS Athena
- Queries are in Presto SQL language
- Views can be created with joins and calculated fields
Data presentation

- AWS Quicksight is the presentation engine
- Data sources get data sets from Athena
- SPICE allows fast in-memory joins, filters and calculated fields
- External data sources can be added and joined
- End users can be granted author access
- Dashboards can be embedded in external sites
- Row and column level security allows granular control on user visibility
Some screenshots
Improvement opportunities

- Create new dashboards to align with Insights and other analytics
- Overall optimization
- Improve data ingestion of tracking events
- Embed visuals in third party sites
- Create transformations to aggregate data and deduce new information
- Use ML algorithms to forecast information
- Automate setup with Cloudformation
Thank you

Q & A

info@aulasneo.com