Optimizing Sparse Matrix-Vector Multiplication on GPUs

Muthu Manikandan Baskaran

Dept. of Computer Science and Engineering
The Ohio State University, Columbus, OH, USA

baskaran@cse.ohio-state.edu

Abstract

We are witnessing the emergence of Graphics Processor
units (GPUs) as powerful massively parallel systems. Fur-
thermore, the introduction of new APIs for general-purpose
computations on GPUs, namely CUDA from NVIDIA,
Stream SDK from AMD, and OpenCL, makes GPUs an
attractive choice for high-performance numerical and scien-
tific computing. Sparse Matrix-Vector multiplication (SpMV)
is one of the most important and heavily used kernels in
scientific computing. However with indirect and irregular
memory accesses resulting in more memory accesses per
floating point operation, optimization of SpMV kernel is a
significant challenge in any architecture.

In this paper, we evaluate the various challenges in devel-
oping a high-performance SpMV kernel on NVIDIA GPUs
using the CUDA programming model and propose opti-
mizations to effectively address them. The optimizations in-
clude: (1) exploiting synchronization-free parallelism, (2)
optimized thread mapping based on the affinity towards opti-
mal memory access pattern, (3) optimized off-chip memory
access to tolerate the high access latency, and (4) exploiting
data locality and reuse. We evaluate our optimizations over
two classes of NVIDIA GPU chips, namely, GeForce 8800
GTX and GeForce GTX 280, and we compare the perfor-
mance of our approach with that of existing parallel SpMV
implementations such as (1) the one from NVIDIA’s SpMV
library, (2) the one from NVIDIA’s CUDPP library, and (3)
the one implemented using optimal segmented scan primi-
tive. Our approach outperforms the CUDPP and segmented
scan implementations by a factor of 2 to 8. Our approach is
either in par with NVIDIA’s SpMV library in performance
or achieves up to 35% improvement over NVIDIA’s SpMV
library.

[Copyright notice will appear here once ' preprint’ option is removed.]

Rajesh Bordawekar

IBM TJ Watson Research Center
Hawthorne, NY, USA
bordaw@us.ibm.com

1. Introduction

Modern computer architecture has shifted towards designs
that employ multiple processor cores on a chip, so called
multicore processors. However, the current multicore sys-
tems are so architecturally diverse that to fully exploit the
potential of multiple processors, the applications have to
be specialized for the underlying system using architecture-
specific optimization strategies.

One of the key reasons for the architectural diversity
is the need to balance memory and processor capabilities.
Memory bandwidth has always been a performance bottle-
neck in traditional computer architectures, and it is even
more pronounced in multicore systems. The trend in com-
puter architecture shows that increasing processor cores on
a chip is more cost effective than increasing memory band-
width. Hence, memory bottleneck is going to remain as
the key performance bottleneck in future multicore archi-
tectures. Traditionally, a multi-level cache hierarchy is used
to alleviate the memory bottleneck. Due to various reasons
concerning power efficiency and performance, many mod-
ern multicore processors, instead of caches, support fast
explicitly managed on-chip memories, often referred to as
scratchpad memories or local stores. The scratchpad memo-
ries are software-managed, unlike caches that are hardware-
controlled, and hence the execution times of programs using
scratchpad memories can be more accurately predicted and
controlled.

Thus, many of the architecture-specific optimization
strategies involve specific optimizations targeted towards
improving memory throughput of an application. These op-
timizations enable parallel applications to yield higher per-
formance by tolerating the underlying memory bottleneck
while utilizing the computational power of the multi-core
system. Such memory optimizations are better appreciated
in applications that are inherently memory-bound. One such
memory-bound application kernel that is heavily used in
many scientific and engineering applications is the Sparse
Matrix-Vector Multiplication (SpMV) kernel. The SpMV
kernel computes a vector x as a result of multiplying a sparse
matrix A by a vector y (x = Ay).

for (int i=0; i <n; i++){

float t=0;

int Ib=rowrtr[i];

int ub = rowPtr[i+1];

for (int j=lb; j < ub; j++){
NN int index = ind[j]
t += val[j]*y[index]

}

x[i] =t;

(a) SparseMatrix (c)C Code for the SpMV Kernel (x=Ay)

2 36 7 238238
H VAZATeZo a7
Index Array (i nd)

T Row Pointer Array (1 owPt r)

(b) CSR Storage Representation

Figure 1. Sparse Matrix-Vector Multiplication and CSR
Sparse Matrix Storage Format

Although SpMV is a prominent kernel used in many en-
gineering and scientific applications, it is well known that
SpMV yields only a small fraction of machine peak perfor-
mance [21]. Sparse matrix computations involve far more
memory accesses per floating point operation, due to indi-
rect and irregular memory accesses. Higher performance for
SpMV computation requires optimizations that best utilize
the properties of the sparse matrix and also the underly-
ing system architecture. The storage format of sparse ma-
trix is also very important in determining the performance.
The most common sparse matrix storage format is the Com-
pressed Sparse Row (CSR) format (Figure 1). The non-zero
elements of each row in the sparse matrix are stored con-
tiguously in a dense array, val . A dense integer array, i nd,
stores the column index of each non-zero element. Another
dense integer array, r owPt r, stores the starting position of
each row of the sparse matrix in val (and i nd). Figure 1(c)
presents the SpMV kernel code in C. Some basic charac-
teristics of the SpMV computation can be inferred from the
kernel presented in Figure 1(c). They include: (1) existence
of synchronization-free parallelism across the rows, (2) ex-
istence of reuse of input and output vector elements, (3) non-
existence of data reuse of matrix elements, and (4) more
memory accesses per floating operation involving a non-zero
element.

Graphics Processing Units (GPUs) are one of the most
powerful multi-core systems currently in use. For example,
the NVIDIA GeForce 8800 GTX GPU chip has a single-
precision peak performance of over 350 GFLOPS and the
NVIDIA GeForce GTX 280 chip has a single-precision peak
performance of over 900 GFLOPS. In addition to the pri-
mary use of GPUs in accelerating graphics rendering op-
erations, there has been considerable interest in exploiting
GPUs for General Purpose computation (GPGPU) [9]. Un-
til very recently, GPGPU computations were performed by
transforming matrix operations into specialized graphics

processing such as texture operations. The introduction of
new parallel programming interfaces for general purpose
computations, such as Compute Unified Device Architec-
ture (CUDA) [16], Stream SDK [1], and OpenCL [17], have
made GPUs powerful and attractive choice for developing
high-performance numerical and scientific computations.
Many modern GPUs exhibit a complex memory organiza-
tion with multiple low latency on-chip memories in addition
to the off-chip DRAM. In addition, they also exhibit a hybrid
cache and local-store hierarchy. The access latencies and the
optimal access patterns of each of the memories vary signif-
icantly, posing a significant challenge to devise techniques
that optimally utilize the various memories to tolerate the
latency and improve the memory throughput. The memory
hierarchy along with the highly parallel execution model
make application optimizations difficult. The challenges in-
crease many-fold when the application to be optimized is a
memory-intensive kernel like SpMV.

In this work, we investigate the problem of optimiz-
ing SpMV kernels on a modern GPU, specifically, on the
NVIDIA GTX series using the CUDA parallel programming
model. First, we evaluate the NVIDIA GPU architecture and
the CUDA execution model using a naive non-optimized im-
plementation of the SpMV kernel. Our experiments reveal
two key inter-related obstacles in improving the SpMV per-
formance on the NVIDIA GPUs: thread mapping and data
access strategies. We address these concerns by proposing
various optimizations that take into account both the applica-
tion and the architectural characteristics. The optimizations
include: (1) exploiting synchronization-free parallelism, (2)
optimized thread mapping based on the affinity towards opti-
mal memory access pattern, (3) optimized off-chip memory
access to tolerate the high access latency, and (4) exploit-
ing data locality and reuse. We evaluate our optimizations
using two different NVIDIA GPUs, namely, GeForce 8800
GTX, and GeForce GTX 280, using a large set of sparse
matrices derived from real applications. We compare our
approach against three existing SpMV CUDA implemen-
tations, namely, NVIDIA’s SpMV library [2], NVIDIA’s
CUDFPRP [6] library and the one implemented using optimal
segmented scan primitives from Dotsenko et al. [8].

Our work makes the following key contributions:

e We provide solutions to address two key inter-related
concerns in improving the performance of memory-
bound applications like SpMV on NVIDIA GPUs, namely,
thread mapping and data access strategies.

e \We implement an effective and optimized SpMV ker-
nel on NVIDIA GPUs considering the architectural char-
acteristics. Our implementation (which optimizes over
the CSR storage format) achieves a comparable or bet-
ter performance than the implementation using the new
sparse matrix storage format (“Hybrid” format) proposed
in NVIDIA’s SpMV library. Our implementation outper-

forms the NVIDIA CUDPP library and the implementa-
tion using optimal segmented scan by a factor of 2 to 8.

¢ \We provide an effective solution that does not change the
storage format of sparse matrices and retains the more
general CSR format. Furthermore, unlike NVIDIA’s
SpMV library there is no preprocessing performed to
change the data layout of matrix elements or input/out-
put vector elements.

The rest of the paper is organized as follows: Section 2
presents an overview of the NVIDIA GPU architecture and
the CUDA programming model. The problem statement is
presented in Section 3. Section 4 describes the proposed
SpMV optimizations in detail. Experimental results are pre-
sented in Section 5. Section 6 discusses related work. Fi-
nally, we conclude in Section 7.

2. GPU Architecture and the CUDA
Programming Model

In this Section, we discuss about the GPU parallel comput-
ing architecture and the CUDA programming interface.

GPU Computing Architecture: The GPU parallel com-
puting architecture consists of a set of multiprocessor units
called the streaming multiprocessors (SMs), each one con-
taining a set of processor cores (called the streaming proces-
sors (SPs)). There are various memories available in GPUs
for a programmer. The memories are organized in a hybrid
cache and local-store hierarchy. The memories are as fol-
lows: (1) off-chip global memory, (2) off-chip local mem-
ory, (3) on-chip shared memory, (4) off-chip constant mem-
ory with on-chip cache, (5) off-chip texture memory with
on-chip cache, and (6) on-chip registers.

The global memory is a large memory and has a very high
latency. The shared memory is present in each SM and is or-
ganized into banks. When multiple addresses belonging to
the same bank are accessed at the same time, it results in
bank conflict. Each SM has a set of registers. The constant
and texture memories are read-only regions in the global
memory space and they have on-chip read-only caches. Ac-
cessing constant cache is faster, but it has only a single port
and hence it is beneficial when multiple processor cores load
the same value from the cache. Texture cache has higher la-
tency than constant cache, but it does not suffer greatly when
memory read accesses are irregular and it is also beneficial
for accessing data with 2D spatial locality.

CUDA Programming Model: Programming GPUs for
general-purpose applications is enabled through an easy-
to-use C/C++ language interface exposed by the NVIDIA
Compute Unified Device Architecture (CUDA) technol-
ogy [16]. The CUDA programming model provides an ab-
straction of the GPU parallel architecture using a minimal
set of programming constructs such as hierarchy of threads,
hierarchy of memories, and synchronization primitives. A
CUDA program comprises of a host program which is run on

the CPU or host and a set of CUDA kernels that are launched
from the host program on the GPU device. The CUDA Ker-
nel is a parallel kernel that is executed on a set of threads.
The threads are organized into groups called thread blocks.
The threads within a thread block synchronize among them-
selves through barrier synchronization primitives in CUDA
and they communicate through a shared memory space that
is available to the thread block. A kernel comprises of a grid
of one or more thread blocks. Each thread in a thread block
is uniquely identified by its thread id (threadldx) within its
block and each thread block is uniquely identified by its
block id (blockldx). Each CUDA thread has access to vari-
ous memories at different levels in the hierarchy. The threads
have a private local memory space and register space. The
threads in a thread block share a shared memory space. The
GPU DRAM is accessible by all threads in a kernel.

The GPU computing architecture employs a Single In-
struction Multiple Threads (SIMT) model of execution. The
threads in a kernel are executed in groups called warps,
where a warp is an unit of execution. The scalar SPs within a
SM share a single instruction unit and the threads of a warp
are executed on the SPs. All the threads of a warp execute
the same instruction and each warp has its own Program
Counter.

3. Problem Statement

GPUs are massively data-parallel systems with very high
parallelism per-chip. A NVIDIA GTX 280 GPU has a the-
oretical single-precision peak performance of around 933
GFlops and a peak off-chip memory bandwidth of over 141
GBps. However, the off-chip memory latency is as high as
200 clock cycles. To fully exploit the massive computing re-
sources of the GPUs, the off-chip memory latency needs to
be efficiently hidden. Thus, optimizations for enhancing the
memory performance are critical to GPU systems for utiliz-
ing their raw computing power. Furthermore, in future sys-
tems, where there will be even more processor cores on chip,
memory bottleneck will increasingly become a very critical
issue. Hence, reducing the memory footprint and tolerating
the memory access latency are very important for high per-
formance, especially for memory bound applications.

Matrix vector multiplication is a memory-bound appli-
cation kernel in which each matrix element that is brought
from memory is used only once in the computation. Hence,
the kernel is characterized by a high memory overhead per
floating point operation. When the matrix is sparse, it in-
curs further complexity in terms of memory overhead be-
cause of the indirect and irregular memory accesses. Sparse
matrix vector (SpMV) multiplication involves, on an aver-
age, more than two memory operations for accessing a sin-
gle non-zero matrix element and is heavily memory-bound.
In addition, the SpMV-specific optimizations depend heav-
ily on the structural properties of the sparse matrix, many of
which might be known only at run-time.

As discussed in Section 2, the GPU architecture has
multiple low latency memories in addition to the off-chip
DRAM, and has a hybrid cache and local-store hierarchy.
The characteristics of the various memories available in
the GPU are diverse in terms of latency, optimal memory
access pattern, and control (either hardware-controlled or
software-controlled). This imposes several challenges to ef-
fectively reduce memory footprint and hide latency. The
optimal access pattern is also dependent on the manner in
which threads are mapped for computation and also on the
number of threads involved in global memory access as in-
volving more threads would assist in hiding the global mem-
ory access latency. Hence, there has to be an optimal thread
mapping to ensure optimized memory access.

In summary, enhancing memory performance is key for
utilizing the high computation power of GPU systems, es-
pecially for memory-bound applications such as the SpMV
kernel. However, there are significant challenges to be ad-
dressed, both in the context of the underlying architecture
and the application. In this work, we develop techniques for
optimizing SpMV computations on GPUs that match appli-
cation requirements against the architectural constraints.

4. Implementation of the Optimizations

In this Section, we discuss the implementation of our tech-
niques for optimizing SpMV computations on GPUs. There
are various storage formats (as explained in [2]) for sparse
matrices, some of which may be well suited for specific pat-
terns of sparse matrices. However, we base our optimizations
on the more general CSR format and discuss ways to adapt
CSR storage format to suit the GPU architecture. We first ex-
plain how we devise the architecture-specific optimizations
for SpMV kernel and also then validate the applicability of
these optimizations in attaining good performance by illus-
trating with a few performance results.

Exploiting Synchronization-free Parallelism: The CUDA
programming model provides an API to synchronize across
all threads belonging to a thread block. However, there is
no APl in CUDA to synchronize between thread blocks.
To synchronize between thread blocks, the CUDA pro-
grammer has to explicitly implement synchronization prim-
itives using atomic reads/writes in the global memory space,
which incurs a high overhead. Hence, it is critical to uti-
lize synchronization-free parallelism across thread blocks.
In SpMV computation, the parallelism available across rows
makes it a natural choice to distribute computations corre-
sponding to a row or a set of rows to a thread block. The
naive way of parallelizing SpMV (in CSR format) is to al-
locate one thread to perform the computation corresponding
to one row and a thread block to handle a set of rows.

Optimized Thread Mapping: In GPUs, thread mapping
for computation should ensure that sufficient threads are in-
volved to hide global memory access latency and also ensure

that the global memory access is optimized, as it is very crit-
ical for performance. The most optimal pattern of access for
global memory is the hardware optimized coalesced access
pattern that would be enabled when consecutive threads of a
half-warp (i.e. group of 16 threads) access consecutive ele-
ments. It is, therefore, necessary to involve multiple threads
for the computation corresponding to each row, and also ar-
rive at a thread mapping based on the affinity towards op-
timal memory access pattern. Our thread mapping strategy
maps multiple threads (16 threads) per row such that consec-
utive threads access consecutive non-zero elements of the
row in a cyclic fashion to compute partial products corre-
sponding to the non-zero elements. The threads mapped to a
row then compute the output vector element corresponding
to the row from the partial products through parallel sum re-
duction. The partial products are stored in shared memory as
they are accessed only by threads within a thread block.

Optimized (Aligned) Global Memory Access. Before we
proceed to explain our optimization to enable hardware op-
timized global memory coalesced accesses, we discuss about
global memory access coalescing in NVIDIA GPUs. Global
memory access coalescing is applicable to memory requests
issued by threads belonging to the same half-warp. The con-
straints for global memory accesses of a half-warp to get
coalesced are slightly different for NVIDIA GeForce 8800
GTX and NVIDIA GeForce GTX 280. The global memory
can be assumed to be consisting of aligned memory seg-
ments. We further base our discussion to memory requests
for 32-bit words. In 8800 GTX device, when all 16 words
requested by the threads of a half-warp lie within the same
64 byte memory segment and if consecutive threads access
consecutive words, then all the memory requests of the half-
warp are coalesced into one memory transaction. But if that
access pattern is not followed among the threads of a half-
warp, then it results in 16 separate memory requests. How-
ever, in GTX 280 device, the access pattern need not be so
strict for coalescing to happen. In GTX 280, the hardware
detects the number of 128 byte memory segments that hold
the 16 words requested by the threads of a half-warp and is-
sues as many memory transactions. There is no restriction
on the sequence of access within the threads of a half-warp.

In both GPU devices, when the base address of global
memory access requests issued by the threads of a half-warp
is aligned to memory segment boundary and the threads ac-
cess words in sequence, it results in fewer memory trans-
actions. It is a strict requirement for coalescing in GeForce
8800 GTX, however it is beneficial even in GeForce GTX
280. Hence we need to adjust the computation to force the
access pattern to be aligned in the above-mentioned manner.

In the SpMV kernel, the number of non-zeros in a row
varies across rows, and hence the starting non-zero of a row
might be in an non-aligned position in the value array that
stores the non-zeros of the sparse matrix. If the computa-
tion proceeds without taking care of the alignment issue, all

rows whose starting non-zero is located in an non-aligned
position will be entirely accessed in an non-optimal manner
and eventually lead to increased memory access cost. We
propose two solutions to resolve the issue and achieve opti-
mized aligned accesses. In the first solution, we view a row
as having an initial (possible) non-aligned portion and then
an aligned portion. The execution proceeds by first comput-
ing the partial products for the non-zeros in the non-aligned
portion of the row, if it exists, before proceeding to compute
the partial products for the aligned portion. In the second so-
lution, zeros are padded to ensure that the number of entries
in each row is a multiple of 16. Both the solutions proved to
be good experimentally. However, since the second solution
requires a change in the storage format because of padding
zeros, we stick to the first solution and use that for perfor-
mance evaluation (that is discussed later in the paper).

Exploiting Data Locality and Reuse: The input and output
vectors are the ones that exhibit data reuse in SpMV compu-
tation. The reuse of output vector elements is achieved by
exploiting synchronization-free parallelism with optimized
thread mapping, which ensures that partial contributions to
each output vector element are computed only by a cer-
tain set of threads and the final value is written only once.
The reuse pattern of input vector elements depends on the
non-zero access pattern of the sparse matrix. Exploiting data
reuse of the input vector elements within a thread or among
threads within a thread block can be technically achieved
by caching the elements in on-chip memories. The on-chip
memory may be (1) texture (hardware) cache, (2) regis-
ters or (3) shared memory (software) cache. Utilizing reg-
isters or shared memory to cache input vector elements re-
quires the programmer to identify the portions of vector
that are reused, which in turn, requires the identification
of dense sub-blocks in the sparse matrix. This requires an
analysis of the sparse matrix (possibly at runtime). How-
ever using the hardware texture cache does not necessar-
ily require analysis of the sparse matrix pattern. Using tex-
ture cache, we can reduce global memory traffic, especially
reduce non-coalesced accesses, and hence increase global
memory bandwidth. We can also exploit 1D spatial local-
ity using texture cache. Hence, we use texture memory to
store the input vector and utilize the read-only texture cache
to achieve the afore-mentioned performance gains.

We also perform an optional runtime preprocessing of
the sparse matrix to identify and extract dense sub-blocks.
We implement a block storage format that suits the GPU
architecture. The features of our format are: (1) We stick
to constant block sizes that enable fine-grained thread-level
parallelism, to avoid the memory access penalty in reading
block size and block index (which is needed if the block size
is allowed to vary), (2) We enforce that starting column of
a block should adhere to the alignment constraints of global
memory coalescing, and (3) We do not make the entire block
dense by filling up zeros, instead, we allow each row in a

8 Different matrices on NVIDIA GTX280
20

Naive I mplementation

Optimized Thread Mapping

Aligned Global Memory Accesses (without cache) -
Aligned Global Memory Accesses (with cache)

nEEA

SpMV Performance (GFLOPS)
= =
o (5]

I I

o
T

NiE ~EE
mal0 fxm4_6

shipsecl raefsky3 — ex1l rim ara-7 e40r0100

Sparse Matrices

Figure 2. Evaluation of our Optimizations on GeForce
GTX 280

block to have variable number of entries, and fill up minimal
zeros that are just enough to make the number of entries in
each row of a block to be a multiple of half warp size.

For every block, the required input vector elements are
loaded from global memory to shared memory, and they
are reused across the rows of a block. The number of input
vector elements loaded for every block is equal to the block
size along column, and since the size is fixed, there is no
additional memory access involved to read the block size.
By enforcing the constraint that starting column index must
be a multiple of half warp size and that number of entries in
each row of a block must be a multiple of half warp size, our
block storage along with optimized thread mapping ensures
that the input vector elements and the sparse matrix elements
are accessed in a coalesced manner.

The loads from global memory to shared memory are
optimal if they involve 16 coalesced accesses. However in
many practical sparse matrices, the dense sub-blocks present
are very small. Hence our run-time preprocessing to iden-
tify and extract dense sub-blocks, in its current state of im-
plementation, does not yield better performance for most of
the matrices. The approach of using texture cache for data
reuse outperforms the approach of performing run-time pre-
processing and using shared memory cache for data reuse.
This is substantiated from the performance numbers in Fig-
ure 3.

Coalesced Accesses # Non-Coalesced Accesses
Matrix Naive Thread Aligned Naive Thread Aligned
Mapping Access Mapping Access
raefsky3 172 18898 30457 582784 292676 114466 | |
rmal0 414 3693 48289 894942 847676 295968 ||
|p_0sa_60 273 413 19181 1085155 189438 134673

Table 1. Profiling Coalesced and Non-coalesced Accesses
on 8800 GTX. Number of coalesced accesses increases as
the optimizations are applied.

4.1 Performance Evaluation of the Optimizations

We exemplify the effectiveness of the afore-mentioned op-
timizations through performance measures taken over a set

8 Different Matrices on NVIDIA 8800GTX
10

CUDPP Implementation
Segmented Scan

Compile-time Optm.(without cache)
Compile-time Optm. (with cache)
Runtime Preprocessing

NEODBR

SpMV Performance (GFLOPS)
ul
T T T T T T T T T T T

v
7
‘ ?
2
v

ship raefsky3 exll rim rmal0 fxm4 6 para7 ed0r0l
Sparse Matrices

Figure 3. Comparison with Existing Approaches on
GeForce 8800 GTX

of sparse matrices. Figure 2 shows the SpMV performance
(in GFLOPS) for a set of sample sparse matrices on GTX
280 GPU after applying the optimizations. The performance
consistently increases after applying each optimization (in
the order mentioned above).

CUDA 2.x supports a profiling infrastructure to instru-
ment architectural metrics such as number of coalesced ac-
cesses, number of non-coalesced accesses, number of in-
structions executed, number of branch instructions executed,
etc. We instrumented some of the matrices to check for the
number of non-coalesced accesses before and after the appli-
cation of our optimizations. Table 1 provides the summary
of coalesced and non-coalesced accesses for GeForce 8800
GTX. These results clearly indicate substantial improvement
in coalesced accesses (and corresponding reduction in non-
coalesced accesses) through our optimizations.

5. Experimental Results

We experimentally evaluated our system using two GPU
processors - NVIDIA GeForce 8800 GTX and NVIDIA
GeForce GTX 280, connected to a host x86/Linux system.
The architectural configurations of the two NVIDIA proces-
sors are presented in Table 3. The CUDA kernels were com-
piled using the NVIDIA CUDA Compiler (nvcc) to generate
the device code that was then launched from the CPU (host).
The GPU device was connected to the CPU through a 16-x
PCI Express bus. The host programs were compiled using
the gcc compiler at -O3 optimization level. We used CUDA
version 2.1 for our experiments. It should be noted that
all performance measures we report are for single-precision
data.

For our evaluation, we used 19 sparse matrices from the
sparse matrix collection described in [7]. The selected sparse
matrices represent a wide variety of real applications includ-
ing finite element method (FEM) based modeling, structural
engineering, vibroacoustics, and linear programming. The
selected matrices also cover a spectrum of properties with

[Feature [800GTX | GTX 280
MUItiprocessors (SMs) 16 30
Processor cores (SPs) 8 8
Processor Clock 1.35GHz 1.296 GHz
Off-chip Memory Size 768 MB 1GB
Off-chip Memory BW 86.4 GBps 141.7 GBps
Peak Performance 388.8 GFLOPS 933.12 GFLOPS

Table 3. Architectural configurations of NVIDIA GeForce

AAAA AT\7/ __ Il ~A_r—__.__ ~T\7 ANnNn

8 Different Matrices on NVIDIA GTX280

20
NVIDIA CUDPPLO

Segmented Scan

NVIDIA SpMV CSR (without cache)
NVIDIA SpMV CSR (with cache)

NVIDIA SpMV Hybrid (without cache)
NVIDIA SpMV Hybrid (with cache)
Compile-time Optimizations (without cache)
Compile-time Optimizations (with cache)

=
o
T

]
]
=]
[E]
| 2
[#]
m
]

SpMV Performance (GFLOPS)
5
I

&

LRI ey

AASSSNSNNRY

‘ex11 fim rmal0
Sparse Matrices

B
?

Figure 4. Comparison with Existing Approaches on
GeForce GTX 280

respect to number of rows/columns of matrix, number of
non-zeros in matrix, presence of uniformly or non-uniformly
aligned dense sub-blocks of single block size, presence of
dense sub-blocks of varied size, presence of irregularity in
the structure, etc.

5.1 Existing Implementations

Parallel SpMV Implementations using Scan Primitives:
NVIDIA has released a library called CUDPP [6] for data-
parallel algorithm primitives, which has an implementation
for SpMV for NVIDIA GPUs. The CUDPP library imple-
ments the SpMV kernel using segmented scan approach as
proposed by Sengupta et al. [18]. Their algorithm [18] is
extended from the scan algorithms proposed by Blelloch et
al. [4].

The SpMV implementation (x = Ay) using segmented
scan can be performed in three steps — (1) Compute the
product Ajjy; for each non zero element A;j and the result
would be an array of products, (2) Perform a segmented scan
using addition operator on the array of products (Each row in
the sparse matrix corresponds to a segment), and (3) Gather
the sum accumulated in the first (or last) element of each
segment in the output vector.

The implementation of segmented scan in CUDPP li-
brary uses a tree-based technique. This has several perfor-
mance limitations as pointed out by Dotsenko et al. [8]. The
CUDPP implementation has inefficient global memory ac-
cesses, shared memory accesses with bank conflicts in some
stages of their algorithm, and higher synchronization across
threads. Dotsenko et al. [8] have implemented fast scan algo-

Matrix Properties Without Cache With Cache

NVIDIA Ours NVIDIA Ours

Matrix #Rows | #Columns #NZs CSR | HYB | Thread | Aligned || CSR | HYB | Aligned

Mapping | Access Access
pwtk 217,918 | 217,918 | 11,634,424 || 6.23 | 11.92 9.47 12.06 8.11 | 20.72 | 1243
shipsecl | 140,874 | 140,874 7,813,404 || 5.77 | 8.63 5.89 7.45 6.68 | 12.36 | 1241
pdblHYS | 36,417 36,417 4,344,765 || 6.82 | 7.29 7.17 9.29 9.42 | 13.07 | 17.46
rail4284 4,284 | 1,092,610 | 11,279,748 || 3.98 | 2.10 452 4.68 416 | 253 4.87
mc2depi | 525,825 | 525,825 2,100,225 || 144 | 7.1 8.09 8.17 184 | 856 8.40
raefsky3 | 21,200 21,200 1,488,768 || 8.09 | 14.31 8.27 12.14 10.25 | 16.80 | 19.35
olafu 16,146 16,146 515,651 6.34 | 10.09 5.90 7.30 8.81 | 1298 | 11.17
besstk35 | 30,237 30,237 740,200 6.02 | 7.24 5.19 6.17 8.43 | 9.99 9.54
venkatOl | 62,424 62,424 1,717,792 || 5.73 | 9.61 6.40 8.29 8.41 | 1526 | 12.27
nasasrb 54,870 54,870 1,366,097 || 5.69 | 8.64 5.68 7.20 8.16 | 1298 | 10.71
ex11 16,614 16,614 1,096,948 || 6.06 | 9.85 6.37 6.39 8.85 | 1354 | 1343
rdistl 4,134 4,134 94,408 412 | 219 3.16 3.65 416 | 1.91 4.79
orani678 2,529 2,529 90, 158 240 | 0.21 2.77 2.81 298 | 0.19 341
rim 22,560 22,560 1,014,951 || 550 | 7.20 591 6.20 7.81 | 9.70 11.41
rmalo 46,835 46,835 2,374,001 || 597 | 7.17 6.75 8.94 8.34 | 11.08 | 16.35
Ip_osa_60 | 10,280 243,246 1,408,073 || 0.58 | 0.08 0.60 0.60 0.63 | 0.08 0.64
fxm4_6 22,400 47,185 265,442 3.19 | 3.00 2.86 3.88 3.47 | 3.08 4.70
para-7 155,924 | 155,924 5,416,358 || 2.94 | 3.96 3.34 3.58 560 | 6.19 7.69
e40r0100 | 17,281 17,281 553,562 5.00 | 4.84 4.97 5.66 712 | 6.72 9.39

Table 2. Performance measures (in GFLOPS) on GeForce GTX 280

rithms on GPUs using a matrix-based technique, which out-
performs the scan primitives in CUDPP. The matrix-based
segmented scan algorithm significantly reduces the shared
memory bank conflicts, improves global memory accesses,
and reduces synchronization. The algorithm is explained in
detail in [8]. We implemented the segmented scan algorithm
from [8] and implemented SpMV using the matrix-based
segmented scan algorithm, following the afore-mentioned
steps. We refer to this implementation of SpMV in further
discussion as the Segmented Scan implementation. We use
CUDPP version 1.0 alpha for our comparative evaluation.

NVIDIA SpMV Library: NVIDIA has recently released
a library specifically for SPMV computation. They discuss
various standard storage formats for sparse matrices and
their applicability on NVIDIA GPUs. The formats with
which sparse matrices are represented in the library are
(1) Diagonal (DIA) format suited for matrices restricted
to a small number of matrix diagonals, (2) ELL format
where non-zeros are stored as a dense matrix, (3) Coor-
dinate (COO) format, (4) CSR format, (5) Hybrid (HYB)
format combining ELL and COO formats, and (6) Packet
(PKT) format which is tailored for symmetric mesh-based
matrices. The details of the implementation are discussed in

[2].
5.2 Performance Evaluation

We first compare the performance of our implementation
with that of CUDPP and Segmented Scan implementa-

tions. Fig. 3 and Fig. 4 show the performance comparison
measures (in GFLOPS) on 8800 GTX and GTX 280, re-
spectively, on eight representative diverse matrices (out of
the 19 matrices) belonging to different classes in terms of
sparse matrix structure. “Compile-time Optimizations” in
Figures 3 and 4 refer to the optimizations such as Optimized
Thread Mapping and Aligned Global Memory Access dis-
cussed in Section 4. It can be clearly observed that in all
cases, our optimizations out-perform both the CUDPP and
Segmented Scan implementations. The CUDPP implemen-
tation, as discussed earlier, results in non-optimal global
and shared memory accesses, leading to poor overall per-
formance. The Segmented Scan implementation has an op-
timized segmented scan primitive. However, as discussed
above, SpMV implementation using segmented scan re-
quires three steps, and at least the step involving the product
computation and that involving the segmented scan opera-
tion have to be launched as separate kernels. This results in
additional kernel invocation overhead and additional copy
overhead as values have to be written on to global mem-
ory in the first kernel to be used in the second kernel. Also,
segmented scan has unwanted memory accesses and compu-
tation as the segmented scan primitive computes the prefix
sum for each element of the segment whereas for SpMV it is
enough to find the prefix sum of the first (or last) element of
the segment. Another major setback with Segmented Scan
implementation is that the segmented scan primitive works
on a block of array and the entire block is copied on to

shared memory. Hence it can work only on a block that can
fit in shared memory, at a time. So if elements belonging to
a segment (in this case, row of a sparse matrix) span across
blocks, then it involves unnecessary movement of partial
results to and from global memory resulting in high mem-
ory access overhead. Hence it is always optimal to maintain
synchronization-free parallelism by maintaining the compu-
tations of a row within a thread block. The non-existence of
such a partition of computation is a cause for poor perfor-
mance of the implementation. Our SpMV implementation
yields about 2x to 8x higher performance compared to that
of CUDPP and Segmented Scan implementations on 8800
GTX. The performance gap is even higher (about 2x to
10x) on GTX 280.

We focus the rest of our evaluation on comparison of
our approach against NVIDIA SpMYV library. The NVIDIA
SpMV library failed to execute on 8800 GTX and hence
those performance measures are not available. The HYB for-
mat of the NVIDIA SpMV library being the hybrid of ELL
and COO formats, exhibits a better performance than ELL
or COO formats in most cases, as discussed in [2]. The DIA
and PKT formats are special formats tailored for certain spe-
cific patterns of sparse matrices. Hence, we compare our im-
plementation only with the implementations using CSR and
HYB formats of the SpMV library. Table 2 shows the perfor-
mance measures (in GFLOPS) on NVIDIA GeForce GTX
280, for all 19 sparse matrices taken for study, for all ver-
sions of our implementation and SPMV library. The columns
ThreadMapping and AlignedAccess refer to our compile-
time optimizations such as optimized thread mapping and
aligned global memory access, as explained in Section 4. It
can be noted from Table 2 that we compare versions that use
texture cache and those that don’t use texture cache.

As explained in Section 4, we base our optimizations on
the CSR format. Hence we first compare our optimized ver-
sion (with and without cache) with NVIDIA SpMV library’s
version using optimized CSR format (with and without
cache). The optimized CSR implementation from NVIDIA
SpMV differs from our optimized version in two key aspects
- (1) they map 32 threads per row, as opposed to 16 in our
version and (2) they do not make “alignment adjustment” in
computation unlike our version that does “aligned access”
optimization (and hence their implementation will result in
many non-coalesced accesses). Our approach outperforms
their version using optimized CSR format (with and without
texture cache) for all matrices under study. Our approach
is less efficient than the version using HYB format when
the number of non-zeros per row is less than 16, as some
threads may remain idle. The version using HYB format ex-
hibits poor performance when the number of non-zeros per
row varies widely across the matrix (for e.g. “rail4284” ma-
trix [2]). In general, our approach achieves better or equiva-
lent performance when compared to NVIDIA SpMV library,
with no change in the sparse matrix storage format.

Number of threads
Matrix 16 32 64
shipsecl | 12.41 | 7.31 | 1.38
pdblHYS | 17.46 | 11.45 | 2.88
raefsky3 | 19.35 | 10.89 | 3.28
venkatOl | 12.27 | 9.28 | 1.49

rmal0 16.35 | 10.04 | 2.45

Table 5. Performance measures (in GFLOPS) for varying
number of threads per row on GeForce GTX 280

Bell et al. [2] compare the GPU SpMV results obtained
from NVIDIA SpMV library and SpMV results on various
different multi-core platforms obtained by Williams et al.
[23] and illustrate that the GPU results offer the best per-
formance. Hence comparing our approach with the NVIDIA
SpMV library will give a clear picture of how our GPU re-
sults would compare against the results on different multi-
core platforms.

5.3 Tuning Configuration Parameters

Varying number of threads and thread blocks: We now
discuss about the variation in performance of our techniques
for different GPU execution configurations, i.e. for vary-
ing numbers of threads and thread blocks. The number of
threads per thread block has a direct implication on the ef-
fective utilization of processors to hide the latency of global
memory accesses. Fewer threads (resulting in fewer warps)
might fail to hide the latency of global memory access when
the number of active thread blocks in a multiprocessor is
low. We vary the number of threads per thread block used
for execution (as 64, 128, 256, and 512) and measure the
performance for five representative matrices for the “Aligned
Access” version. The number of thread blocks in each case
varies according to the number of rows in the matrix. The
results are presented in Table 4. From the results, we see the
variation in performance for varying number of threads is
not much indicating that the optimizations that are realized
are very effective in tolerating the global memory latency.

The number of thread blocks in the above experiment,
as mentioned, depends on the number of rows in the matrix
and s equal to PIESSLLous:unbe oF e pa s fo
However if the number of thread blocks is kept fixed at a
value irrespective of the number of rows, then depending
on the number of rows, some thread blocks may have to
handle multiple blocks of rows. This requires additional loop
overhead in the code and would result in poor performance.
Our experiments confirmed the same and hence we did not
keep the number of thread blocks at a fixed value for our
experiments.

Varying number of threads handling a row: We con-
ducted experiments to study how effective is the choice of
using 16 threads to handle the computation pertaining to a
row. The choice, as explained earlier, is primarily based on
the architectural feature that memory coalescing rules are

Without Cache With Cache
Number of threads Number of threads

Matrix 64 128 256 512 64 128 256 512
shipsecl | 7.25 | 745 | 7.38 | 7.24 10.1 | 12.41 | 12.04 | 11.65
pdblHYS | 9.15 | 9.29 | 9.27 | 9.05 || 17.01 | 17.46 | 17.00 | 16.38
raefsky3 12.14 | 11.32 | 11.32 | 11.44 || 16.69 | 1935 | 18.2 | 17.13
venkat0l | 8.05 | 829 | 801 | 8.06 || 11.16 | 12.27 | 11.90 | 11.45

rmal0 865 | 894 | 874 | 871 || 13.00 | 16.35 | 15.98 | 15.40

Table 4. Performance measures (in GFLOPS) for varying number of threads per thread block on GeForce GTX 280

defined for a half warp, i.e. 16 threads. Hence it is the mini-
mum number of threads that can guarantee coalescing. The
number of non-zeros can be very low, even less than 16.
When 16 is chosen as a general default choice, the penalty
incurred for such cases (when there are less non-zeros per
row) would be less compared to that while choosing 32 or
64. Also, there is a reduction involved per row for reduc-
ing the partial products that are computed in parallel by the
threads. 16 threads lead to lower reduction cost while utiliz-
ing good amount of parallelism.

We measure the performance for five representative ma-
trices for the “Aligned Access” version (using texture cache).
The results of the experiment are presented in Table 5. For
the reasons explained above, the performance when the
choice is 16 threads per row, is higher than the other choices
of 32 and 64. This also explains why our implementation
always outperforms NVIDIA’s implementation using CSR
format which uses 32 threads per row.

6. Redated Work

Over the last two decades, there has been significant amount
of work on optimizing sparse matrix computations (SpMV).
Most of the work have concentrated on optimizing sparse
matrix kernels on general-purpose architectures. SpMV be-
ing a memory-bound kernel, most of the optimizations tar-
get performance improvements at various memory levels in
memory hierarchy. The optimizations broadly include opti-
mal data structure for storing the sparse matrix [3], exploit-
ing block structures in sparse matrix [22, 11], and blocking
for reuse at the level of cache [15, 20], TLB [15], and reg-
isters [13, 12]. OSKI [21] is a state-of-the-art library collec-
tion providing low-level primitives for automatically tuned
kernels on sparse matrices. OSKI uses techniques exten-
sively from the SPARSITY sparse-kernel automatic tuning
framework [12] for arriving at optimizations for sparse ker-
nels. Unfortunately, the optimization techniques proposed
for cache-based general-purpose architectures cannot be di-
rectly applied for GPU architecture. GPUs are massively
parallel systems in which having more concurrently active
threads are critical for performance, especially for hiding
high latency memory accesses by effective thread schedul-
ing. This is because when there are more active threads,
when some threads are busy waiting for the completion of

memory access request, the thread scheduler can switch con-
trol over to other threads, thereby keeping the system busy
without stalling as far as possible. Therefore, fine-grained
thread-level parallelism is beneficial for GPUs, and hence,
in most cases data reuse across threads is better rather than
reuse within a thread. While spatial locality and temporal lo-
cality are very important to exploit at the level of cache or
registers in general-purpose architectures, mapping of com-
putation among threads that result in optimal memory access
pattern has to be considered in GPU architectures which, in
some cases, can negate locality, but yet turn out to be bene-
ficial.

Recently, Williams et al. [23] emphasize and substanti-
ate the need for multicore specific optimization strategies for
various emerging multicore platforms including AMD dual-
core, Intel quad core, STI Cell, and Sun Niagara2 systems.
They clearly quantify the extent of significance of memory
bandwidth bottleneck for increasing number of cores and
motivate memory bandwidth reduction for SpMV compu-
tations. Our work also, on the same lines, emphasizes opti-
mization strategies that are specific to the GPU architecture
taking into consideration the complex GPU memory organi-
zation and the non-trivial optimal mapping of computation
among threads.

There are several sparse matrices corresponding to real
applications which possess dense block substructures. Ex-
ploiting the presence of dense blocks will help in enhanc-
ing data reuse, especially, of the input vector elements. The
dense block structure may either contain same size blocks
that are uniformly aligned or same size blocks that are non-
uniformly aligned or varied size blocks that are irregularly
aligned [22]. The Block CSR (BCSR) [11] and Unaligned
Block CSR (UBCSR) sparse storage formats are proposed
to improve sparse matrix computations by effectively han-
dling dense sub-blocks in sparse matrices. These approaches
identify small dense blocks which are more suited for regis-
ter blocking in traditional architectures and in short-vector
processors. Buatois et al. [5] have developed a sparse lin-
ear solver on GPUs and have implemented SpMV, the pri-
mary kernel in the solver, using the BCSR format for register
blocking. They have implemented using AMD’s (then ATI’s)
Close-To-Metal (CTM) API for general-purpose computa-
tion on ATI GPUs. The GPUs they have targeted are the ATI

X1k series which have multiple pipelines and each pipeline
has a 4-element vector processors. However in modern mas-
sively parallel SIMD architecture of NVIDIA GPUs which
has scalar processors executing in SIMD fashion in a multi-
processor, the BCSR format with small dense blocks leads to
coarse-grained parallelism that enhances register level data
reuse, but results in non-optimal global memory accesses.

There has been several works that perform a runtime
processing to reorder computation and data for locality en-
hancement for cache-based architectures (e.g. [14]). Strout
et al. [19] developed a compile-time framework for compos-
ing run-time data and computation reordering for data lo-
cality. However in our work, we neither perform any such
heavy runtime processing nor use a compiler framework to
facilitate such a runtime reordering. There has been work
on optimizing SpMV [10] on NVIDIA chips that are pre-
CUDA. However, the memory access constraints and char-
acteristics pertaining to the off-chip DRAM (global mem-
ory) in those chips are completely different from that of the
current NVIDIA chips.

7. Conclusions and Future Work

In this work, we have presented the key architectural opti-
mizations that have to be addressed in GPUs for efficient
execution. We have analyzed the various challenges in ex-
tracting high-performance from a prominent memory-bound
scientific kernel like SpMV on NVIDIA GPUs using CUDA
and have developed optimizations that take into account both
the application and the architectural characteristics. We have
evaluated our techniques over two classes of NVIDIA GPU
chips, namely, GeForce 8800 GTX (having 128 cores per
chip) and GeForce GTX 280 (having 240 cores per chip). We
have obtained significant performance improvements over
existing parallel SpMV implementations, on both the GPU
chips, clearly indicating the effectiveness of our approach to
scale the performance of SpMV for increasing humber of
cores per chip.

We plan to extend our approach to include a more so-
phisticated runtime inspection module that can effectively
reorder data and computation to further exploit data reuse
and optimize memory access. We also plan to integrate auto
tuning infrastructure into our approach to determine optimal
block sizes for arbitrary irregular sparse matrices.

References

[1] AMD Stream SDK.
http://ati.amd.com/technology/streamcomputing/.

[2] N. Bell and M. Garland. Efficient Sparse Matrix-Vector
Multiplication on CUDA. NVIDIA Technical Report NVR-
2008-004, NVIDIA Corporation, Dec. 2008.

[3] A.J. C. Bik and H. A. G. Wijshoff. Automatic Data Structure
Selection and Transformation for Sparse Matrix Computations.
IEEE Trans. Parallel Distrib. Syst., 7(2):109-126, 1996.

[4] G. E. Blelloch. Prefix Sums and Their Applications. Technical
report, 1990.

10

[5] L. Buatois, G. Caumon, and B. Levy. Concurrent Number
Cruncher: An Efficient Sparse Linear Solver on the GPU. In
High Performance Computation Conference (HPCC), Springer
Lecture Notes in Computer Sciences, 2007.

[6] CUDPP: CUDA Data Parallel Primitives Library.
http://Aww.gpgpu.org/developer/cudpp/.

[7] T. Davis. The University of Florida Sparse Matrix Collection.
ACM Trans. on Mathematical Software.
http://www.cise.ufl.edu/research/sparse/matrices.

[8] Y. Dotsenko, N. K. Govindaraju, P.-P. Sloan, C. Boyd, and
J. Manferdelli. Fast Scan Algorithms on Graphics Processors.
In ACM ICS’08, pages 205-213, 2008.

[9] General-Purpose Computation Using Graphics Hardware.
http://ww.gpgpu.org/.

[10] J. B. lan, I. Farmer, E. Grinspun, and P. Schroder. Sparse Ma-
trix Solvers on the GPU: Conjugate Gradients and Multigrid.
ACM Transactions on Graphics, 22:917-924, 2003.

[11] E.-J. Imand K. A. Yelick. Optimizing Sparse Matrix Compu-
tations for Register Reuse in SPARSITY. In Proceedings of the
International Conference on Computational Science, volume
2073 of LNCS, pages 127-136, San Francisco, CA, May 2001.
Springer.

[12] E.-J. Im, K. A. Yelick, and R. Vuduc. SPARSITY: Frame-
work for Optimizing Sparse Matrix-Vector Multiply. Interna-
tional Journal of High Performance Computing Applications,
18(1):135-158, February 2004.

[13] J. Mellor-Crummey and J. Garvin. Optimizing Sparse Matrix-
Vector Product Computations Using Unroll and Jam. Int. J.
High Perform. Comput. Appl., 18(2):225-236, 2004.

[14] J. Mellor-Crummey, D. Whalley, and K. Kennedy. Improving
Memory Hierarchy Performance for Irregular Applications
Using Data and Computation Reorderings. Int. J. Parallel
Program., 29(3), 2001.

[15] R. Nishtala, R. Vuduc, J. Demmel, and K. Yelick. When
Cache Blocking Sparse Matrix Vector Multiply Works and
Why. In Proceedings of the PARA’04 Workshop on the State-
of-the-art in Scientific Computing, Copenhagen, Denmark,
June 2004.

[16] NVIDIA CUDA.
http://developer.nvidia.com/object/cuda.html.

[17] Open Computing Language (OpenCL).
http://www.khronos.org/news/press/releases/
khronos_launches_heterogeneous_computing_initiative/.

[18] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens. Scan
Primitives for GPU Computing. In GH ’07: Proceedings of
the 22nd ACM SIGGRAPH/EUROGRAPHICS symposium on
Graphics hardware, pages 97-106, 2007.

[19] M. M. Strout, L. Carter, and J. Ferrante. Compile-time
Composition of Run-time Data and Iteration Reorderings.
In ACM PLDI 03, 2003.

[20] O. Temam and W. Jalby. Characterizing the Behavior of
Sparse Algorithms on Caches. In Supercomputing ’92: Pro-
ceedings of the 1992 ACM/IEEE conference on Supercomput-
ing, pages 578-587, 1992.

[21] R. Vuduc, J. W. Demmel, and K. A. Yelick. OSKI: A Library
of Automatically Tuned Sparse Matrix Kernels. In Proceedings
of SciDAC 2005, Journal of Physics: Conference Series,
San Francisco, CA, USA, June 2005. Institute of Physics
Publishing.

[22] R. Vuduc and H.-J. Moon. Fast Sparse Matrix Vector Multi-
plication by Exploiting Variable Block Structure. In Proceed-

ings of the International Conference on High-Performance

Computing and Communications, LNCS 3726, Sorrento, Italy,
September 2005.

[23] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick,
and J. Demmel. Optimization of Sparse Matrix-vector
Multiplication on Emerging Multicore Platforms. In SC

’07: Proceedings of the 2007 ACM/IEEE conference on
Supercomputing, pages 1-12, 2007.

11

