High-Performance Jupyter Notebooks – Managed GPU environment. Scale up as needed. Get started in minutes with no setup required.

Try the free notebook with examples here: https://cutt.ly/rapids-cheatsheets-dask4beginners

For additional cheat sheets go to: nvidia.com/rapids-kit/

CLUSTER SETUP

Start the Dask cluster.

```python
from dask_cuda import LocalCUDACluster

cluster = LocalCUDACluster(  
    n_workers=2,  
    threads_per_worker=1,  
    CUDA_VISIBLE_DEVICES="0,1",  
    rmm_managed_memory=True,  
    rmm_pool_size="20GB"
)
```

- Create a Dask cluster with 2 GPU workers if the machine has at least 2 GPUs available. Starting the Dask cluster this way uses the RAPIDS Memory Manager with an initial pool of 20GB.

DATAFRAME

Perform computations using Dask cuDF DataFrames.

```python
ddf = dask_cudf.from_cudf(df, npartitions=2)  
```

- Create a Dask cuDF DataFrame from a cuDF DataFrame with two partitions.

```python
ddf = dask_cudf.from_cudf(df, chunksize=1000)  
```

- Create a Dask cuDF DataFrame from a cuDF Dataframe with each partitions containing 1,000 rows.

```python
def process_frame(df):
    df['num_inc'] = df['number'] + 10
    return df

ddf.map_partitions(process_frame)  
```

- Apply a function to each frame in the distributed DataFrame and receive modified frames back.

```python
def multiply(a, b, mult):
    for i, (aa, bb) in enumerate(zip(a, b)):
        mult[i] = aa * bb

def process_frame_mul(df):
    df = df.apply_rows(  
        multiply  
        , incols = {'number': 'a', 'float_number': 'b'}  
        , outcols = {'mult': np.float64}  
        , kwargs = {}  
    )
    return df['mult']

ddf.map_partitions(process_frame_mul)  
```

- Apply a function to each frame in the distributed DataFrame that calls a custom RAPIDS kernel on data and receive modified frames back.

```python
def divide(a, val_divide):
    for i, aa in enumerate(a):
        val_divide[i] = aa / val_divide

def process_frame_div(dff, col_a, val_divide):
    dff = dff.apply_rows(  
        divide  
        , incols = {col_a: 'a'}  
        , outcols = {'div': np.float64}  
        , kwargs = {'b': val_divide}  
    )
    return dff['div']

ddf['div_number'] = ddf.map_partitions(process_frame_div, 'number', 10.0)
ddf['div_float'] = ddf.map_partitions(process_frame_div, 'float_number', 5.0)  
```

- Apply a parametrized function to each frame in the distributed DataFrame that calls a custom RAPIDS kernel on data and receive modified frames back.

CLIENT

Manage the Dask client.

```python
from dask.distributed import Client

client = Client(cluster)
```

- Create a Dask client and connect it to the cluster by passing a cluster object (cluster can be either LocalCUDACluster or a remote cluster).

```python
client = Client('<scheduler>:<scheduler-port>')
```

- Create a Dask client and connect it to the cluster by passing IP, hostname, or address of a scheduler and port as string.

```python
client.restart()  
client.scheduler_info()  
client.upload_file('<file>.egg')  
```

- Restart a Dask cluster and clear memory.

- Extract all the cluster information as a dictionary. The information includes the scheduler and dashboard address and port, as well as a dictionary of all workers with the related information.

- Use a Python package on a Dask cluster. If a custom package is used in the code, every worker in the cluster needs to be able to import that package. This function puts the uploaded file in the PATH so the worker Python process can find it and import it.

```python
client.shutdown()  
```

- Shut down the connected scheduler and workers.
DATAFRAME

Perform computations using Dask cuDF DataFrames.

- `ddf.compute()` - Run the computations and coalesce the results into a cuDF DataFrame.

- `ddf.persist()` - Execute the Dask task graph and cache the results in memory on workers but not return the results to the headnode. Persisting the data intelligently in memory can have a profound impact on performance.

DELAYED

Build a delayed execution graph to parallelize code.

```python
from dask import delayed
from dask.distributed import Client
import cupy as cp

def delayed_task(n):
    df = cudf.DataFrame({'random': cp.random.rand(n)})
    df['rand_scaled'] = df['random'] * 3
    return df

tasks = [delayed(delayed_task)(10) for _ in range(2)]
```

- Parallelize code and build the task graph directly with Dask. If your solution does not fit the DataFrame framework directly, this approach can still utilize Dask to parallelize computations. These tasks are executed lazily.

FUTURE

Control immediate execution of parallel code.

```python
client.persist(ddf) - Execute the Dask task graph immediately and persist the intermediate result in memory.

def first_computation(df):
    return df['number'] + 10

def second_computation(result):
    return result / 10.0

computation_1 = client.submit(first_computation, ddf)
computation_2 = client.submit(second_computation, computation_1)
- Submit tasks to run in parallel with dependency between tasks. Dask will wait for the results of the first computation to finish before running the second task.

computation.result().compute() - Process the data and return the distributed result onto the headnode as a cuDF DataFrame.

client.gather(computation) - Collect the future objects from distributed memory.
```

- Submit tasks to run in parallel with dependency between tasks. Dask will wait for the results of the first computation to finish before running the second task.

```python
computation = client.compute(tasks, optimize_graph=True)
```

- Await for the set of tasks to finish before progressing.

```python
def process_frame_delayed(df):
    return df['number'] + 10

ddf_delayed_add = dask_cudf.from_delayed([process_frame_delayed(df)
    for df
    in ddf.to_delayed()])
```

- Recreate the Dask cuDF DataFrame from delayed objects.