model_config { arch: "resnet" n_layers: 18 use_bias: True use_batch_norm: True all_projections: True use_pooling: False freeze_bn: False freeze_blocks: 0 freeze_blocks: 1 input_image_size: "3,224,224" } train_config { train_dataset_path: "/data/car_make_dataset/training_set" val_dataset_path: "/data/car_make_dataset/val_set" pretrained_model_path: "/workspace/tao-experiments/pretrained_car_make_model/vehiclemakenet_vunpruned_v1.0/resnet18_vehiclemakenet.tlt" # Only ['sgd', 'adam'] are supported for optimizer optimizer { sgd { lr: 0.01 decay: 0.0 momentum: 0.9 nesterov: False } } batch_size_per_gpu: 32 n_epochs: 3 # Number of CPU cores for loading data n_workers: 16 # regularizer reg_config { # regularizer type can be "L1", "L2" or "None". type: "L2" # if the type is not "None", # scope can be either "Conv2D" or "Dense" or both. scope: "Conv2D,Dense" # 0 < weight decay < 1 weight_decay: 0.00005 } # learning_rate lr_config { cosine { learning_rate: 0.04 soft_start: 0.0 } } preprocess_mode: "torch" # enable_random_crop: True # enable_center_crop: True # enable_color_augmentation: True } #eval_config { # eval_dataset_path: "/path/to/your/test/data" # model_path: "/workspace/tao-experiments/classification_make/weights/resnet_080.tlt" # top_k: 3 # batch_size: 256 # n_workers: 8 # enable_center_crop: True #}