random_seed: 42 yolov3_config { big_anchor_shape: "[(114.94, 60.67), (159.06, 114.59), (297.59, 176.38)]" mid_anchor_shape: "[(42.99, 31.91), (79.57, 31.75), (56.80, 56.93)]" small_anchor_shape: "[(15.60, 13.88), (30.25, 20.25), (20.67, 49.63)]" matching_neutral_box_iou: 0.7 arch: "resnet" nlayers: 18 arch_conv_blocks: 2 loss_loc_weight: 0.8 loss_neg_obj_weights: 100.0 loss_class_weights: 1.0 freeze_bn: false #freeze_blocks: 0 force_relu: false } training_config { batch_size_per_gpu: 100 num_epochs: 10 enable_qat: false checkpoint_interval: 10 learning_rate { soft_start_annealing_schedule { min_learning_rate: 1e-6 max_learning_rate: 1e-4 soft_start: 0.1 annealing: 0.2 } } regularizer { type: L1 weight: 3e-5 } optimizer { adam { epsilon: 1e-7 beta1: 0.9 beta2: 0.999 amsgrad: false } } pretrain_model_path: "/content/drive/MyDrive/results/yolo_v3/pretrained_resnet18/pretrained_object_detection_vresnet18/resnet_18.hdf5" } eval_config { average_precision_mode: SAMPLE batch_size: 8 matching_iou_threshold: 0.5 } nms_config { confidence_threshold: 0.001 clustering_iou_threshold: 0.5 top_k: 200 force_on_cpu: True } augmentation_config { hue: 0.1 saturation: 1.5 exposure:1.5 vertical_flip:0 horizontal_flip: 0.5 jitter: 0.3 output_width: 960 output_height: 544 output_channel: 3 randomize_input_shape_period: 0 } dataset_config { data_sources: { tfrecords_path: "/content/drive/MyDrive/cable_damage_yolov8_dataset/tfrecords_new/kitti_tarnival_new*" image_directory_path: "/content/drive/MyDrive/cable_damage_yolov8_dataset/train/rename_and_save/images" } include_difficult_in_training: true image_extension: "jpg" target_class_mapping { key: "break" value: "break" } target_class_mapping { key: "thunderbolt" value: "thunderbolt" } validation_fold: 0 }