) software~

A Natural Tutorial

By Jochen Stein
August 2009

What is Natural?

Natural is a programming language designed to simplify the implementation of
business solutions. It takes a very pragmatic and non-theoretical approach to
common programming tasks such as database access.

Natural is similar to JAVA in that it is an interpreted language; during execution
Natural source programs are dynamically “compiled” into a platform independent
byte code (object) format which is then executed in a platform dependent
environment.

While originally developed for mainframe computers, Natural has been available on
Windows and UNIX platforms for several years.

Install the software

This tutorial uses Natural on Windows and although it can access many different
types of databases (e.g. DB2 on mainframe computers and RDBMS databases using
SQL) Natural is optimised to access Adabas databases. In this tutorial we will use
an Adabas database.

You can download free Community Editions of both Natural and Adabas from the
download section of the Adabas and Natural Developer Community site.

Install Natural
Download the package, unzip it and choose “setup.exe” in the folder where you
unpacked it to.

Once installation begins you will be asked to choose which Natural products you
wish to install. Simply choose “Natural”. Please refer to Figure 1.

& HPP-PE_NATV6230 =[O x|

| Fle Edt view Favortes Todls Heb “Ad&as |) ci\sAG\WPP-PE_NATVE230 | Be |a‘w

| @eack ») - T | S search [Folders |- |Ju—m |/ Released products | =) Pre-felease kits () Natural2006 =) Newsletters | Public | =) Tacodev @) SagHQPortal |g] Customize Links

Name - | size | Type | Date Modified |
File and Folder Tasks ¥ [)APPSERVER File Folder 18/01/2007 16:23
BN File Folder 23/01/2007 11:18
Other Places = T File Folder 18/01/2007 16:15
y i=poc File Folder 18/01/2007 16:16
123 5AG [TRACE File Folder 18/01/2007 16:16
() My Documents wnDows File Folder 23/01/2007 11:1
) My Computer [AUTORUN.INF 1KB Setup Information 05/12/2005 16:19
3 My Network Places B.ico 1KB Icon 05/12/2005 16:18
(@) nsTALLATION HTML 1KB HTML File 30/11/2006 05:44
[E] LicENsE TXT
[2) README.TXT]
Bsenree

= nAELURAL

Text Document 05/12/2005 16:19

Version 6.2.3

[
for electronic business

. Natural Runtime

. Server Installation... é‘ Read Me
Natural Security... 5 | Installation Guide

P E

& Exit

© Copyright Software AG 1992-2006. All rights reserved.

f softWwARE AG

Figure 1 - Natural installer

Next, you will see a couple of questions regarding the Terms of Agreement. You
may accept or reject them as you wish; however, if you reject them the installation
will terminate!!

Then you will be asked to supply a license key. Use the license file you were given
when you downloaded the Natural Community Edition (this is an xml file). Then
choose "Standard” when asked what type of Natural installation you want.

After this, simply accept all the defaults that the installation provides.

The Natural installation placed some icons on your desktop. One is labelled Natural

(the Natural Developer Studio), plus one for the Natural Configuration Utility and
one for the Natural Component Browser.

Page 2

Configure Natural

Before we start the Natural Studio we need to do some configuration to make life a
little easier for us.

Natural distinguishes between two programming modes - Reporting and Structured
mode. All of our examples will use structured mode. In order to enable this
permanently we need to start the Natural Configuration Utility by clicking on its
icon.

Open the trees “"Natural Parameter Files” and "NATPARM” by clicking on the “+”
signs in front of the text. Then click on the “+" signs in front of “Natural
Development Environment” and “Compiler Options”. Next, click the box to check
“Structured Mode” on the menu on the right hand side of the window. Please refer
to Figure 2.

&, natural Configuration Utility - NATPARM
File Edit View Help

DH@eRxX (e |

ull

=+ Natural Configuration Files
¢} Global Configuration File
¢} Local Configuration File
[} Natural Parameter Files
. NATPARM
- Database Management
Matural Execution Configuration
[Natural Development Environment
Compiler Options
Remote Debugaing
[Single Point of Development
Product Configuration
Client/Server

‘Compiler Options |
¥ Interpretation of database short names
™ Dump generation
T Length/format specfication
T Keyword cheding
¥ Structured mode
¥ Generate symbol tables
I syntax error contrel

Adabas 5. 1.4
DBA Work...

2

+]- SYSESM W o
- SYSLOAD

. NATWEB [Translate quotation marks

. NATWEBS
- NATWEB3D
7 NATWEBIR I Parameter checking for CALLNAT statement

g z:m:z ™ Internal sign representation of format P

I™ MASK compatible with MOVE EDITED.

Endian mode (ENDIAN)
Generation of global formatidentifiers (GFID)
Active ross reference (XREF)

Figure 2 - Natural Configuration Utility

While you are here you can also check the “"Generate symbol tables” box. This is
not absolutely necessary but it makes debugging a little easier. See Figure 2.

Go to the menu options along the top, click on “File”, save these settings and exit
the Configuration Utility.

Page 3

Test the Natural installation

Now we can start the Natural Developer Studio. You do this by simply clicking on
the Natural icon on your desktop. You should get something which looks like this
Figure 3:

islx|

Object View Lbrary Debug Tools Help
BrrOabtcdaddr BEREbs slE|laeexslocl Csl#e]
%

L3 Lbraries 100)
-4 DAEFIBM (7307) Disconnected

= Logical View | =, Flat View | pgs File View

Figure 3 - Typical Natural Studio screen

Now there is only one thing left for us to do. I find it is sometimes useful to have
the Natural command line available. You can view this by selecting “View” on the
top menu bar and then checking the "Command Line” option.

You have now configured Natural. So let’s get on with Adabas....

Install Adabas

After downloading and unzipping the package, again simply choose “setup.exe”.
After this, simply accept all the defaults that the installation provides.

The Adabas installation placed an icon for the Adabas DBA workbench under Start-

>All Programs->Software AG Adabas v6.1.n on your machine. You may also want
to place a short cut to this on your desktop because we will need it later.

Page 4

Start the sample Adabas database

Adabas delivers a Sample Adabas database, which has to be installed after Adabas.
To install this sample database, you go to Start->All Programs->Software AG
Adabas v6.1.n on your machine and click the icon “Create Demo Database”. The
Sample Database will now create in a Command Window.

We will now use the DBA workbench to start this database, so simply click on the
DBA workbench icon you placed on your desktop. You can now start the database
by selecting the database and then “Database” from the top menu bar and then
“Start”, Figure 4.

iE DBA Workbench V5.1.4.01

+ DBA Workbench V5.1.4.01 - Database List

GENERAL DATABASE

Figure 4 - Using the DBA workbench to start an Adabas database

When you want to terminate the database simply select “"Database” and “Stop”.
You will then be asked how you want to terminate the database. Choose option
“Shutdown”.

Congratulations! You have now successfully installed Natural and Adabas!!

Take a break, you’ve earned it, and then we’ll get onto writing a simple Natural
program.

Page 5

Natural library structure
Before we go ahead and create a Natural program, please bear with me while I tell
you a little about the structure of a Natural application.

Natural uses libraries as containers to store objects (programs, classes,
subprograms, etc.). These libraries are managed in the panel on the left hand side
of the Natural Studio screen, called the library workspace. Please refer to Figure 5.

Local Data Areas
Parameter Data Areas.
DDMs

Resources

1. [System Libraries.

(o SYsAPT

(3 SYSDOM

ey SYSERR

-y SYSEXCOM
(3 SYSEXODM
o SYsBEVT
(o SYSEXINS
(53 SYSEXNDC
() SYSEXNXC

() SYSEXPG
() SYSEXPLG
() SYSEXSTS
-y SYSEXSXS
-y SYSEXSYN
-y SYSEXT
(3 SYSEXUEX
(i SYSEXV
(o SYSIL
(o SYSINPL
() SYSTNPLO
{0 SY8LB
-y SYSLIBS
-y SYSMAIN
[y SYSMAP
By SYSMN
(3 SYsNCP
£y SYSNPE
(3 SYSNPEH1L
(3 SYSNPEHZ
() SYSNPR
() SYSOBH
() SYSPLAPT
-y SYSPLCGC
-y SYSPLEXT
(3 SYSPLMAN
-y SYSPLNEE
(3 SYSPLPDC
{3y SYSPLPGC
(3 SYSPLPVC

”Cmmmdl | Lbay: [ws Environmert: [Local i

L

Figure 5 - Typical Natural Studio Screen showing the Library Workspace panel

You can see that there are different types of libraries shown in the workspace but
the ones you need to know about are:

System Libraries: These contain the Natural objects required to run Natural tools
and utilities.

System libraries always start with "SYS” and are reserved for Software AG. Please
do not modify their contents and do not use them to store your own objects.

User Libraries: A user library contains all the objects which make up a user
application. Typical object types are programs, classes, subprograms, data areas,
etc. We will see later how you create and use these items.

User libraries are the libraries we will be concerned with in this tutorial, so now let’s
look at how to set up your own user library.

Page 6

Select the node named "User Libraries" in the library workspace view and then from
the “Library” menu, choose “New”, Figure 6.

Alternatively, you can invoke the context menu (right mouse click) and choose
“New” from the drop down menu.

Il Ubrary Debug Tooks Help
Brrast|cdd | BEEEElLE |5 B o | BT

=2} Local Environment
B Ei [—

om Logical View [= At View | 7, Fie View |
BT Pt e

Creates a new library

Figure 6 - Creating a new Natural user library

A new library with the default name "USRNEW" is created and is shown in the User
Libraries tree. The default name is selected so that you can immediately enter a
new name by simply overwriting the default.

Let’s call our library “TUTORIAL".

Page 7

The Natural version of “Hello World”

Everybody’s first attempt at programming in a new language is the “Hello World”
program and here we are going to be no exception.

You first need to create a new program and open up an editor window so we can
input some Natural statements.

Do this by selecting the "TUTORIAL" library you just created in the library
workspace panel and then either choose "New” and “Program” from the context
menu, or select the “New program” icon in the program toolbar, or select "Object”
in the main toolbar and then choose “"New” and “Program”.

Whichever option you choose will start up the program editor and present you with
an empty program editor window like this, Figure 7.

[Mratwaalez -
|| obiect edt vew program Lbrary Debug Tods window Help
HrogiK suddr BREEHLE S|E || feex Eoo| =lgs | #hgs ||

[=-E} Local Envirenment
=g User Libraries

{B[x]

B! untitled3 - Program

oy WS
18 System Libraries
13 Libraries (33, 100)
£ DAEFIBM (7307) Disconnected

EEr R T

= Logical View | =, Flat View | 5, Fie View

H(:llllllildl | Uibrary: [TEST Environmert: [Local i

Creates a new Program [tine 171 [cor w1 [szes [ove [stRucT [

Figure 7 - An empty program editor screen

Page 8

Now you can input your Natural statements, so enter the following code:

* The "Hello world!" example in Natural.

*

WRITE "Hello world!"
END /* End of program

Comment lines start with an asterisk (*) in the first column followed by at least one
blank or a second asterisk. When you forget to enter the blank or second asterisk,
Natural assumes that you have specified a system variable; this will result in an
error.

You can also insert comments at the end of a statement line. In this case, the
comment starts with a slash followed by an asterisk (/*).

The text that is to be shown in the output is defined with the WRITE statement. It is
enclosed in quotation marks. The ENDstatement is used to mark the physical end
of a Natural program. Each program must end with END

Now we want to see if we have made any typing errors and, if there aren’t any, run
our program. For this we can use the system command RUN. This automatically
first invokes the systemm command CHECKwhich checks the program code for errors
and, if no error is found, the program is then compiled on the fly and executed.
See Figure 8.

Page 9

il

Oject Edit View Program Lbrary Debug Tools Window Help
HrrEhy cHd o FanElE 8w inexE

bkl

Library Werkspace: alx HELLD [TUTORIAL] - Program =1aix]
EQ Local Environment The "Hello world!"™ example in Natural. =
| E-@ User Libraries *

by ASG WRITE "Hello world!™

{3 SYSTEM ENC /* End of program

= TUTORIAL

! g8 Programs
HELLO.

I {3 WS

. B Lg System Libraries

| B Lbraries (99,100)

B - 2§ DAEFIBM (7307) Disconnected

saa Logical Vew [=, Fat View | g il View
JJ Command ~| Library: [TUTORIAL Envirorment: [Cocal

Figure 8 - Running a Natural program

[line 174 [Col1 [chr1 [size 106 [ow [smocTt [

You invoke the RUNcommand by selecting “"Object” and “Run” or by simply choosing
the RUNicon on the program toolbar (Figure 8).

The Natural program is started and the output is displayed in a terminal emulation
screen, Figure 9.

Page 10

ol
Object Edit View Program Library Debug Tools Window Help

BrODEYE sRE@SP BaBle|8e| ceexs oo Clalss

8
INEN Bl werio [rutomALY - Program
Eg Local Environment * The "Hello world!"™ example in Natural.
| E-@ User Libraries *
(2 ASG WRITE "Hello world!"
| {033 SYSTEM ENL /* End of program

=5 TUTORIAL
! B Programs

{3 WS
i L8 System Libraries

| B Lbraries (99,100)

£ DAEFIBM (7307) Disconnected

T

Page 1 87-85-83 13“:2‘7:ﬂ %)

Hello world?

sea Logica View [=, ot View | iz, il View

JJ Command ~| Library: [TUTORIAL Envirorment: [Cocal

[line 174 [Col1 [chr1 [size 106 [ow [smocTt [
Figure 9 - “"Hello World” program output

Now press “Enter” to return to the program editor.
Finally we want to save our program. We have seen that Natural is an interpretive
language, so you can run the source you typed in directly without having to go

through a compile stage as you would with, for example Cobol or C.

So we can now simply save the program by choosing “Object” and “"Save As”.

Page 11

Object gdit Vew Progam Lbrary Debug Tools Window Help _
RS EL T A IR (RS I ——_

bkl

hbraw Workspace NE {BI HELLO [TUTORIAL] - Program
El+ 5 Local Environment * The "Hello world!" example in Natural.
| g User Libraries i

B ASG WRITE "Hello world!"
END /* End of program

System Libraries
Libraries (39,100)
£ DAEFIBM (7307) Disconnected

B |Gy || v e
| [

Hame ok |

Libraries: | TUTORIAL v.] &I

e [Pogem 7| JE3
5

sea Logica View [=, ot View | iz, il View

JJCmmmd [=] by TUTORAL Envirrment: [[ocal
Figure 10 - Saving the Hello World program

Line 4/4 [colg [chra [size 106 [GvR [sTRUCT

The Save As command pops up a window to ask us for a name for our program,
let’s be inventive and call it "HELLO"”. See Figure 10.

Page 12

You will now see an icon labelled "HELLO"” representing your program under the
user library "TUTORIAL"” in the left hand Library Workspace window, Figure 11 (click

on TUTORIAL, then Programs).

=181x]

[Hatural 6.2

Lbrary Debug Tocls Window Help
cHAED BEAEEE|S | E ; | ot |av e || s

]

~ 1181 HELLO [TUTORIAL] - Program N [4]
: > :

example in Natural.

=
DISPLAY "Hello world!®
END /¥ End of program

aries
L3 Ubraries (99,100)

|m@%\;aug“|v- o [

o Logical View | =, Flat View | g File View
HOmInmd ~| Lbrary: [TUTORIAL Environment: [Cocal ‘

Figure 11 - Result of saving the HELLO program

Line 474 [Col22 [chr22 [Size 108 [V [sTRUCT

You can now close the program editor window.

A bit more about Natural programs
In order to re-run your program you have to open the source file and use the run
command as described above.

There is, however, another option in Natural and that is to “compile” the program
source into an intermediate object form. In Natural this is called cataloging. You
can then invoke this intermediate object directly without having to open the
program source.

So now, let’s catalog your program by selecting the Program icon folder under
TUTORIAL in the Library Workspace and then either choose the Catalog icon on the
program toolbar or select Catalog from the list of command options (under Library

on main menu bar).

Notice now that a small green dot has appeared in the program icon to indicate that
the catalog function has been performed on this item.

Page 13

You can now use the execute command, again either from the program menu or
from the drop down command option list, to run your program. The results should
be exactly as before.

This two stage process of saving and then cataloguing a program can be a bit
tedious so Natural also provides a function to do everything in one step. This is the
sTowcommand; this saves our program but also invokes the CHECKcommand before
saving the program and the CAT command afterwards. The STOWcon is located on
the program toolbar and the command is also offered on the drop down menus.
From now on we will use this more convenient method of saving our programs.

That's it. You have now successfully created and run your first Natural program.
That wasn't too difficult was it?

Page 14

Using Natural to access an Adabas database

Before we go onto creating a program which uses the database we created I want
to say just a short few words about how Natural interacts with the world of
databases and Adabas in particular.

For Natural to be able to access a database file, a logical definition of the physical
database file is required. Such a logical file definition is called a data definition
module (DDM). The DDM contains information about the individual fields of the
database file.

To be able to use the database fields in a Natural program, you must specify the
fields from the DDM in a view.

DDMs are usually defined by the Natural administrator but some sample DDMs are
already provided for us in the system library SYSEXDDM. For this tutorial we will
use the predefined DDM for the EMPLOYEES database file. This also conveniently
happens to be one of the files we loaded into our test database.

Start by creating a new program.

The database file and the fields that are to be used by your program have to be
specified between DEFINE DATA and END-DEFINE at the top of the program.

So enter the following code in the program editor:

DEFINE DATA
LOCAL

END-DEFINE
*

END

LOCALmeans that the variables that you will define with the next step are local
variables which apply only to this program.

Page 15

Now you can import the fields, including the required format and length definitions,
from the DDM into the program editor. To do this you simply place the cursor in the
line below LOCAL and from the Program menu, choose “Import”. See Figure 12.

o
I

[1] Hatural 6.2

|| cbect cdt wew program Lbrsry Debug Tods wndow bep
ErraskecRdcs BvBEEs|(gE||ieexgloc Clalas

Ly Wokigace T

& Local Environment DEFINE DATA
&+ g User Libraries LOCAL
(5 SYSTEM
E- G5 TUTORIAL END-DEFINE
£l Programs o
-[l58 HELLO END
Bl WS

L@ System Libraries.
L3 Ubraries (99, 100)

| @t 2ams || vme g

11
Library: Object List
(e FELLC

& Program £ Map

€ Sipioaan (]) Locsl Datikies

€ Funchon(7) € Globel Data pres
© Subraine € Parer Dists e
€ Helpoutine. € 00N)

Importable Data Filds:

gt | [Ganeed | | Hep |

o Logical View | =, Flat View | g File View
HOmInmd ~| Library: [TUTORIAL Environment: [Local ‘
Line 2/7 [Col3 [chr3 [size 72 [ovr [sTRUCT

Figure 12 - How to import a DDM into a Natural program

The Library field is automatically filled to the current library, but we know the DDM
we want to use is in SYSEXDDM. So in the drop-down list box, select SYSEXDDM.

Now select the DDM option button and all defined DDMs are shown in the Object list
box.

Page 16

Select the sample DDM with the name "EMPLOYEES". See Figure 13.

|| obiect edt vew progam Lbrary Debug Tooks Window Hep
BErooutcadcp BaERls 35| ieexEa|l =l ai | oh i
Ly Worizpsos R =l

1
£

i) Local Environment DEFINE DATA
= £ User Libraries LOCAL
(o SYSTEM
£ g TUTORIAL END-DEFINE
£l Programs *
R o END
G ws

L@ System Libraries.
L3 Ubraries (99,100)

[mm s samg [vmeligl

Object List:
[EMPLOYEES -
€ Pogiam) Mg EMPLOYEES-TAMING
oo L SAG-TOURS
Suibpraram] Ll Dataiiea ECHPRICES

; : AG-TOURSH
£ Function (7] € Globel Data diea ISAG-TOURS-ECOMPANY
. ISAG-TOURS-E-CONTRACT
(24 Bl € e Duts rea ||| O e
€ Helouthe: © DDME) SAG-TOURS-E-PERSON =l

Impartable Data Fields:

g | [Canesl |

oo, Logical View | —, Flat View | o File View
”Cﬂlma’ld v | Library: [TUTORIAL Environment: |Local ‘

[tne 2/7 [col3 ™ [chr3 [siz=72 [ove [sTRUCT [

Figure 13 - How to import a DDM into a Natural program

The importable data fields are now shown at the bottom of the dialog box, Figure

14.

Page 17

o
I

[1] Hatural 6.2

|| cbect cdt wew program Lbrsry Debug Tods wndow bep
ErraskecRdcs BvBEEs|(gE||ieexgloc Clalas

Y T S i
& Local Environment DEFINE DATA <]
&+ g User Libraries LOCAL

(5 SYSTEM

E- G5 TUTORIAL END-DEFINE
(=G5 Programs -

-[R8 HELo END
Bl WS

L@ System Libraries.
L3 Ubraries (99, 100)

Import Data Field x|

| @t 2ams || vme g

Library: |SYSEXDDM =
[Type-
€ Pragam € Map

€ Sipieaan (]) Locsl Datakies

€ Funchon(7) € Globel Data pres
C Subraine € Parery Dists pres
€ Helpoutne. @ DDM)

Importable Data Filds:

AR PERSONNEL-D
AB FULL-NAME
AC FIRST-NAME

G

MIDDLE-

NAME
AD MIDDLE-NAME
AF MAR-STAT
SEX

IO
=
=]
B S
— e o

impet | [Canedl_|

o Logical View | =, Flat View | g File View
HOmInmd ~| Lbrary: [TUTORIAL Environment: [Cocal ‘

[line 2/7 [col3 [chr3 [Size 72 [ove [smucT [
Figure 14 - How to select the DDM data fields

Press CTRL and select the following fields:

FULL-NAME
NAME

DEPT
LEAVE-DATA
LEAVE-DUE

Choose the Import button.

The View Definition dialog box appears and by default the name of the DDM is
proposed as the view name. You can specify any other name; we want to call our
view "EMPLOYEES-VIEW".

Choose the OK button.

The Cancel button in the Import Data Field dialog box has now been changed to
Quit. So choose the Quit button to close the Import Data Field dialog box.

Page 18

The following code should have been inserted in the program editor:

1 EMPLOYEES-VIEW VIEW OF EMPLOYEES
2 FULL-NAME
3 NAME (A20)
2 DEPT (A6)
2 LEAVE-DATA
3 LEAVE-DUE (N2)

The first line contains the name of your view and the name of the database file
from which the fields have been taken. This is always defined on level 1.

The level is indicated at the beginning of the line. The names of the database fields
from the DDM are defined at levels 2 and 3.

Levels are used in conjunction with field grouping. Fields assigned a level number of
2 or greater are considered to be a part of the immediately preceding group which
has been assigned a lower level number.

You can also see a little on data definitions in Natural, the format and length of
each field is indicated in parentheses, A stands for alphanumeric, and N stands for
numeric.

Now that you have defined the required data, you will need to add a READIoop. This
reads the data from the database file using the defined view. With each loop, one
employee is read from the database file. Name, department and remaining days of
vacation for this employee are displayed. Data are read until all employees have
been displayed.

So insert the following code below END-DEFINE:

READ EMPLOYEES-VIEW BY NAME
*

DISPLAY NAME 3X DEPT 3X LEAVE-DUE

*

END-READ

BY NAME indicates that the data which is read from the database is to be sorted
alphabetically by name.

The DISPLAY statement arranges the output in column format. A column is created

for each specified field and a header is placed over the column. 3X means that 3
spaces are to be inserted between the columns.

Page 19

Your program should now look something like this:

DEFINE DATA
LOCAL
1 EMPLOYEES-VIEW VIEW OF EMPLOYEES
2 FULL-NAME
3 NAME (A20)
2 DEPT (A6)
2 LEAVE-DATA
3 LEAVE-DUE (N2)
END-DEFINE

READ EMPLOYEES-VIEW BY NAME
*

DISPLAY NAME 3X DEPT 3X LEAVE-DUE

*

END-READ

*

END

This is all you need. Before you run your program, make sure the

Adabas database we created has been started (it needs to be active) and you
started Natural in Structure Mode. Now, if you run your program the following
output will appear, Figure 15:

u
%

[1] Hatural 6.2

|| obect ede wew Erogram Lerary Debug Tools wndow e

Broopylsad o2 EaEEks|sE|inexaloa| Slg|las

WREN I:5: untitled1 - Program = (o x| |55 i
El S Local Environment DEFINE DATA = i
&+ g User Libraries LOCAL o
Q SYSTEM 1 EMPLOYEES-VIEW VIEW OF EMPLOYEES Ilﬂ
Bl TUTORIAL 2 FULL-NAME =
(=G5 Programs 3 NRME (A20) 3
-8 HEno 2 DEPT (A6) L)
By WS 2 LEAVE-DATA
L@ System Libraries. 3 LEAVE-DUE (N2) =
L3 Ubraries (99, 100) END-DEFINE L
READ EMPLOYEES-VIEW BY NRME E
-
DISPLAY NAME 3X DEPT 3X LEAVE-DUE % ' . o
* X P
. T &
iy Page 1 86-11-30 13:5ﬁ:i| il 1=
ERD HAHE DEPARTHENT LEAUE &
CODE DUE :
ABELLAN PROD 84 28
ACHIESON COHP A2 25
ADAN UENTS9 19
ADKINSON TECH10 a8
ADKINSON TECH1@ 18
ADKINSON TECHBS 17
ADKINSON HGHT18 28
ADKINSON TECH1@ 26
ADKINSON SALE30 36
ADKINSON SALEZA a7
ADKINSON SALEZ@ 38
AECKERLE SALE4? H
AFANASSIEY HGHT3 8 26
AFANASSIEY TECH18 a5
AHL HARI09 as
AKROYD COFrP 03 28
ALEMAN FINAB3 28

ALESTIA FINAB3

[t

o Logical View | =, Flat View | g File View
Hmm ~| Lbrary: [TUTORIAL

Figure 15 - Sample output from the database

Environment: |Local ‘

[tine 17719 [Col1 [chr1 [size 338 OV [STRUCT

Page 20

As a result of the DISPLAY statement, the column headers (which are taken from the
DDM) are underlined and one blank line is inserted between the underlining and the
data. Each column has the same width as defined in the DEFINE DATA block (that is:
as defined in the view).

The title at the top of each page, which contains the page number, date and time,
is also caused by the DISPLAY statement.

Press ENTER repeatedly to display all pages, or press Esc to return to the program
editor.

Now save this program with the sTowcommand; let’s call it PGM1.

You will have noticed that the previous output was very long and it would be a good
idea if we could restrict it so that only the data for a range of values is displayed.

So we will now only display names with values starting with "Adkinson" and ending
with "Bennett". I happen to know that these names are defined in the demo
database.

Unlike, for example PHP or Ruby, Natural is a strictly typed language and performs
type checking to ensure that variables are used consistently. So before you can use
new variables, you have to define them. Therefore, insert the following below
LOCAL

1 #NAME-START (A20) INIT <"ADKINSON">
1 #NAME-END (A20) INIT <"BENNETT">

These are user-defined variables; they are not defined in demo database.

Note that we use the hash (#) at the beginning of the name just to distinguish the
user-defined variables from the fields defined in the demo database. It is not
required.

INIT defines the default value for the field and the default value must be specified
in pointed brackets and quotation marks.

Now insert the following below the READstatement:

STARTING FROM #NAME-START
ENDING AT #NAME-END

Page 21

Your program should now look as follows:

Page 22

Now run this and scroll through the output by hitting Enter. You will notice that the
Program displays output up to the name “"Bennett”, Figure 16.

S

|| obiect edt vew progam Lbrary Debug Tooks Window Hep
el = el =t el e - — 1 R

Ubray Workspees BE [:8: perz [rutoRIAL - Program .

i) Local Environment DEFINE DATA
= £ User Libraries LOCAL

(& SYSTEM 1 $NAME-START (R20) INIT <"ADKINSON">
B8 TUTORIAL 1 $NAME-END (R20) INIT <"BENNETT">

=l 1 EMPLOYEES-VIEW VIEW OF EMPLOYEES
58 pam1 2 FULL-NAME
8 a2 3 NAME (A20)
Bl WS 2 DEPT (28)
- g System Libraries 2 LEAVE-DATA
e £} Uibraries (98,100) 3 LEAVE-DUE (N2}
END-DEFINE

o]

Page n 06-12-01 11:33:14

NAME DEPARTHENT LEAVE
CODE DUE

G [gaag v =

BAUHEL UENT64 19
BAYVER SALE26 a1
BECH T k1]
BECKER PROD22 38
BECKER FINAZY 38
BECKER SALE7 a0
BEGUERIE TECHBS 33
BEK SALE28 21
BELL HEHT38 26
BENCHETRIT TECHB1 19
BENNETT SALER3]
BENNETT SALER3

oza Logical View

T —

[Line 7724 [col16 [chri6 [size 507 [ovR [sTRuCT |

Figure 16 - Output using start and end values

We now have the basics of a database search program. What is missing is how to
prompt the user for data, i.e., get the starting and ending name dynamically via
screen input.

We modify your program so that input fields for the starting name and ending name
will be shown in the output screen. This is done using the INPUT statement. So
insert the following below END-DEFINE:

INPUT (AD=MT)
"Start:" #NAME-START /
"End: " #NAME-END

The session parameter AD stands for "attribute definition", its value Mmstands for
"modifiable output field", and the value T stands for "translate lowercase to
uppercase".

Modifiable output field means that the default values defined with INIT (that is:
"ADKINSON" and "BENNETT") will be shown in the input fields. Different values may
be entered by the user. When the Mmvalue is omitted, the input fields will be empty
even though default values have been defined.

Page 23

Translate lowercase to uppercase means that all lowercase input is translated
to uppercase before further processing. This is important since the names in the
demo database file have been defined completely in uppercase letters. When the T
value is omitted, you have to enter all names completely in uppercase letters.
Otherwise, the specified name will not be found.

"Start:" and "End:" are text fields (labels). They are specified in quotation marks.

The user enters the desired starting name and ending name directly into the #NAME-
STARTand #NAME-ENDdata fields.

The slash (/) means that the subsequent fields are to be shown in a new line.

If you now run this program you will be asked for some input, Figure 17:

u
I

[1] Hatural 6.2

|| obect ede wew Erogram Lerary Debug Tools wndow e
MEHE cRacT B IRELE 8B smaxs oo Slalses| e
WREN I:5: pGr12 [TUTORTAL] - Program * O] x| [
5 1 Local Environment DEFINE DATA]
&+ g User Libraries LOCAL

(i SYSTEM 1 #NAME-START (A20) INIT <"ADKINSON">
=g TUTORIAL 1 #NAME-END (A20) INIT <"BENNETI">

]

[HELLo 1 EMPLOYEES-VIEW VIEW OF EMPLOYEES
-[l58 PaM1 2 FULL-NAME
8 pamz 3 NEME (B20)
By WS 2 DEPT (A€)

g System Libraries. 2 LEAVE-DATA

L3 Uibraries (39,100 3 LEAVE-DUE (N2)

ENL-DEFINE

INFUT (AD=MT)

ol
Start:

End: BENNETT

|mr@%\gaug“|v- o i

son Logical View

H Command ~| Lbrary: [TUTORIAL

Environment: |Local ‘

[Line 17727 [col28 [chr28 [sizes82 [Ove [sTRUCT [
Figure 17 - Restricting output

Simply press ENTER and you will get the same behavior as before.

As it is now, the program terminates after it has shown the requested list of
employees. If the user wants a new selection he has to re-start the program.

Page 24

What we want to do now is allow the user to display a new employees list
immediately, without restarting the program. We do this by putting the existing
program code into a REPEATIloop.

Insert the following below END-DEFINE:

REPEAT

REPEATdefines the start of the repeat loop.

Define the end of the repeat loop by inserting the following before the END
statement:

END-REPEAT |

We now also have to allow the user to terminate the program; we do this by
checking for a dot (.) in the input field and, while we are here, we will also allow the
user to just input a single value.

So insert the following below the INPUT statement:

IF #NAME-START ="' THEN
ESCAPE BOTTOM
END-IF

IF #NAME-END ="' THEN
MOVE #NAME-START TO #NAME-END
END-IF

The first IF statement, which must be ended with END-IF, checks the content of the
#NAME-STARTfield. When a dot (.) is entered in this field, the ESCAPE BOTTOM
statement is used to leave the loop. Processing will continue with the first
statement following the loop (which is ENDin our case).

The second IF statement checks if the ending value is empty and if so simply
moves the start value to the end value field.

Now run the program.

In the resulting output, enter "JONES" in the start field and clear the end field, then
press ENTER.

In the resulting list, just the employees with the name Jones are shown.

Press ENTER. Due to the REPEATIoop, the input screen is shown again and you can
also see that "JONES" has been entered as the ending name.

To leave the program, enter a dot (.) in the field which prompts for a starting name

and press ENTER. Do not forget to delete the remaining characters of the name
which is still shown in this field.

Page 25

Stow the program; you will also see that a green dot appears in the icon, indicating
that the program has been stowed.

Our program is looking quite good now, but what happens if there are no database
records returned? We will now define the message that is to be displayed when the
user enters a starting name which cannot be found in the database.

Add the label RD1. to the line containing the READstatement so that it looks as
follows:

RD1. READ EMPLOYEES-VIEW BY NAME |

And insert the following below END-READ

IF *COUNTER (RD1.) = 0 THEN
REINPUT 'No employees meet your criteria.'
END-IF

To check the number of records found in the READIoop, the system variable
*COUNTERIs used. If its contents equal 0 (that is: an employee with the specified
name has not been found), the message defined with the REINPUT statement is
displayed at the bottom of the screen.

To identify the READIoop, you assign a label to it (here RD1.). Since a complex

database access program can contain many loops, you have to specify the loop to
which you refer.

Page 26

The completed program should now look like this:

Run the program.

In the resulting screen, enter a starting name which is not defined in the demo
database (for example, "XYZ") and press ENTER.

Page 27

The message should now appear

1] Hatural 6.2

|| obect Edt vew program Lbrery Debug Toos Widow bep

at the bottom of the screen, Figure 18.

CEstlcRedn EERElLE|S (@] 4

| e =g | b s

X |35 |

Library Workspacs __RE
i) Local Environment
=L@ User Libraries

DEFINE DATA
LOCAL
1 #NAME-START
1 #NAME-END

[pem1
G ws

g System Libraries.

-3 Lbraries (59,100)

2 FULL-NAME
3 NAME (A20)
2 DEPT (A6)
2 LEAVE-DATA
3 LEAVE-DUE (N2)
END-DEFINE

REPEAT
INBUT (AD=MT)
"Start:" $NAME-START /
"End: " $NAME-END

IF #NAME-START = '.'
ESCAPE BOTTCM
END-IF

THEN

IF #NAME-END = ' ' THEN
MOVE #NAME-START TC #NRME-E1
END-IF

*

RD1. READ EMPLOYEES-VIEW BY NAMI
STARTING FRCM #NAME-START
ENDING AT $NAME-END

-

DISPLAY NAME 3X DEPT 3X LEAVE

END-READ
IF *COUNTER (RD1.) = 0 THEN
END-IF

END-REPEAT

{8 PGHM1 [TUTORIAL] - Program
(320) INIT <"ADKINSON">
(220) INIT <"BENNETI">

1 EMPLOYEES-VIEW VIEW OF EMPLOYEES

REINFUT 'No employees meet y(

Bl

[-5
Start:

End:

%ﬂm%léuaam'-

Ho enployees meet your criteria.

em Logica View [Aol Vew]y il Vo

Figure 18 - Error message

Save the program by stowing it a

[iine 1723 ol lohr1 Szesss [avn [sTRUCT |

nd you are finished!!

Page 28

