

Much Ado About Zone 2: A Narrative Review Assessing the Efficacy of Zone 2 Training for Improving Mitochondrial Capacity and Cardiorespiratory Fitness in the General Population

Kristi L. Storoschuk¹ · Andres Moran-MacDonald¹ · Martin J. Gibala² · Brendon J. Gurd¹

Accepted: 7 April 2025
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025

Abstract

Popular media has recently positioned Zone 2 training—defined as low-intensity exercise below the lactate threshold—as the optimal intensity for improving mitochondrial and fatty acid oxidative capacity, thereby supporting cardiometabolic health and chronic disease prevention. These recommendations largely stem from observational data of elite endurance athletes who engage in large volumes of Zone 2 training and possess high mitochondrial and fatty acid oxidative capacity. However, we challenge the broad endorsement of Zone 2 training for members of the general public, as it contradicts substantial evidence supporting the use of high-intensity exercise for improving mitochondrial capacity and cardiometabolic health. This narrative review critically examines the current evidence on Zone 2 training and mitochondrial and fatty acid oxidative capacity outcomes to assess the appropriateness for a public recommendation. We conclude that current evidence does not support Zone 2 training as the optimal intensity for improving mitochondrial or fatty acid oxidative capacity. Further, evidence suggests prioritizing higher exercise intensities (> Zone 2) is critical to maximize cardiometabolic health benefits, particularly in the context of lower training volumes.

1 Introduction

Skeletal muscle mitochondrial capacity (a broad term used to include common indices of mitochondrial content and function) is an important determinant of metabolic health and athletic performance [1, 2]. Mitochondrial capacity is also linked to the capacity for glucose and fatty acid oxidation (i.e., metabolic flexibility) [3, 4], as well as aging [2] and the pathophysiology of insulin resistance [5]. Exercise prescription to enhance mitochondrial capacity is generally modeled on elements of the Frequency, Intensity, Time, and Type (FITT) principle [6]. While all elements are important, the ‘optimal’ intensity to elicit mitochondrial responses has emerged as a topic of considerable debate.

An increasingly prominent narrative, advanced by influential health and fitness commentators including leading

Key Points

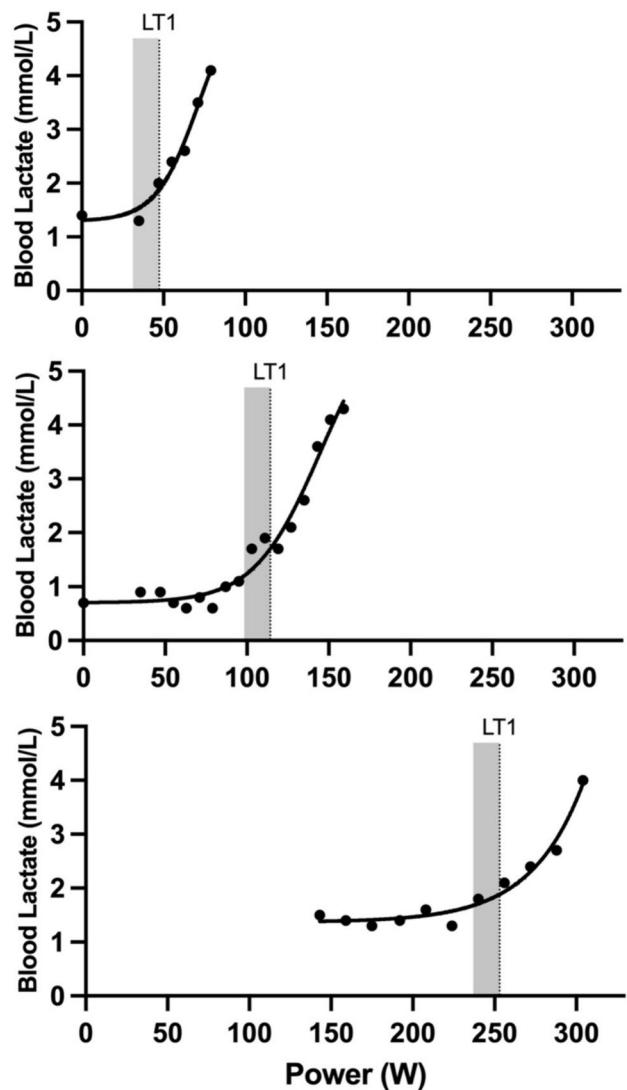
Zone 2 training is touted by influential commentators including on podcasts and in popular and social media as the optimal training intensity for improving mitochondrial and fat oxidative capacity, thereby supporting metabolic health and chronic disease prevention.

Our review failed to uncover substantive evidence supporting claims that Zone 2 is superior to higher exercise intensities for improving mitochondrial and fat oxidative capacity, a result possibly driven by the lack of studies explicitly examining Zone 2 training as it is commonly characterized.

Zone 2 may fall below the moderate- to vigorous-intensity range recommended by physical activity guidelines, and thus advising the general public to forgo higher exercise intensities in place of Zone 2 may limit the health benefits of exercise.

✉ Brendon J. Gurd
gurdb@queensu.ca

¹ School of Kinesiology and Health Studies, Queen's University, 28 Division St., Kingston, ON K7L 1A1, Canada


² Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada

podcasters, is that Zone 2 training should be prioritized over higher exercise intensities to optimize improvements in mitochondrial capacity [7]. Specifically, the popular

narrative claims “Zone 2 exercise intensity is the best at stimulating mitochondrial function and fat oxidation” [8]. Owing to the link between mitochondria and metabolic health, Zone 2 training is therefore purported to “play(s) a crucial role in preventing chronic disease by improving the health and efficiency of your mitochondria” [7]. Finally, Zone 2 prescriptions shared through popular media emphasize that exceeding Zone 2 intensity is to be avoided to achieve the unique benefits of Zone 2 on mitochondrial capacity [7]. Zone 2 in these contexts is generally referred to as low- to moderate-intensity exercise coinciding with: (1) the maximal rate of fat oxidation (Fat_{max}) [9]; (2) blood lactate concentration ([BLa]) just below the first lactate threshold (LT1; ~ 1.7 – 2.0 mmol/L; Fig. 1) [7]; and (3) the capacity to maintain a comfortable conversation (i.e., Talk Test [10]).

Proponents of Zone 2 training (as the term is generally defined above) commonly cite observations that high-level endurance athletes perform large volumes of low-intensity (i.e., Zone 2) training [11–15] and possess high mitochondrial and fatty acid oxidative (FAO) capacities [1]. However, conflating the training habits of endurance athletes and the optimal exercise dose for improving mitochondrial capacity in non-athletes may be misplaced for two reasons: (1) endurance athletes perform high volumes of both low- (Zone 2) and high-intensity training [12, 13, 16], making claims of a causal relationship between low-intensity training and mitochondrial capacity tenuous and (2) the total training volumes undertaken by endurance athletes, often > 20 h per week [17], are substantially greater than physical activity targets set by public health guidelines [18]. These caveats make it challenging to confidently infer that Zone 2 training is optimal for eliciting improvements in mitochondrial capacity, especially in populations performing total training volumes consistent with physical activity guidelines (i.e., ~ 150 min per week).

The advocacy for Zone 2 exercise over higher exercise intensities to improve mitochondrial capacity, and health, also contradicts experimental evidence and physical activity recommendations in exercise science. When compared with an equivalent volume of moderate-intensity exercise, high-intensity exercise (HIE) generally results in greater mitochondrial signaling and adaptations [19, 20], cardiorespiratory fitness (CRF) [21, 22], and other indices of cardiometabolic health [23, 24]. Further, the American College of Sports Medicine (ACSM) physical activity guidelines acknowledge that higher intensities may be *required* to improve CRF [6]. We do not question the health benefits of physical activity, which includes that done at low intensity or characteristic of Zone 2 exercise. However, given the known physiological and health benefits associated with HIE [25], the general consensus in exercise science that high intensities lead to greater health and fitness outcomes [26], and

Fig. 1 Graphical representation of the first lactate threshold [LT1] (dashed line; [BLa] = 2.0 mmol/L) and corresponding Zone 2 (shaded region; blood lactate concentration [BLa] = ~ 1.7 – 2.0 mmol/L) derived from a graded exercise test. **A** Sex: female; age: 20 years; WR_{peak}: 204W; LT1: 23% WR_{peak}. **B** Sex: female; age: 18 years; WR_{peak}: 262W; LT1: 45% WR_{peak}. **C** Sex: male; age: 24 years; WR_{peak}: 441W; LT1: 57% WR_{peak}. Data obtained from our laboratory during a graded cycling test. Briefly, participants A and B began cycling at a load-less intensity followed by a step increase to 36 watts (W) for an additional 5 min and subsequent 8-W increments every 5 min until [BLa] reached 4.0 mmol/L. Participant C's test began at 33% WR_{peak} and increased by 16 W every 3 min until [BLa] reached 4.0 mmol/L. WR_{peak}: highest average 30-s average power (W) achieved during an incremental cycling test consisting of 1-min increases of 24 W/min until volitional fatigue beginning at 80 W.

the widespread interest in Zone 2 training, a critical evaluation of claims that Zone 2 training is superior for improving mitochondrial capacity is needed.

Thus, the purpose of this narrative review is to critically evaluate the evidence supporting the efficacy of Zone 2

training for improving mitochondrial capacity in the general population (i.e., non-endurance-trained individuals who are insufficiently active or meeting physical activity guidelines). We focus on two foundational claims regarding Zone 2 training: (1) Zone 2 training is optimal for improving mitochondrial capacity and (2) Zone 2 training is optimal for improving FAO capacity. As Zone 2 training is ultimately recommended for reducing the risk of chronic disease, we additionally address whether Zone 2 training is optimal for improving health and fitness.

2 Methods

2.1 Literature Search

A systematic literature search was not utilized to obtain Zone 2 exercise studies. Articles were obtained by searching databases using search terms related to “low-intensity exercise,” “endurance training,” “continuous training,” “lactate threshold”, “ventilatory threshold,” and “ Fat_{max} ”. We used additional articles from reference lists, including relevant systematic reviews, articles shared through social media, and relevant literature known to authors.

2.2 Inclusion Criteria

For the current review, because most definitions of Zone 2 place it within the moderate-intensity domain, and we were able to find few studies that explicitly prescribed Zone 2 exercise, we considered exercise performed at intensities below LT1, or demonstrating physiological responses consistent with the moderate-intensity domain ($[BLa] < 2.0 \text{ mmol/L}$, below ventilatory threshold 1, below Fat_{max} , $< 45\%$ maximum rate of oxygen consumption [$\dot{V}O_{2\max}$]) when assessing the evidence regarding the potential benefits of Zone 2. It is important to note that there are many definitions of LT1 and methods for assessing the threshold [27]. We chose the 2.0-mmol/L threshold because it is a widely used threshold for determining LT1 [27, 28] and the definition most commonly cited within social/popular media [7]. Studies that did not meet these criteria were generally not included in our evaluation of the acute responses and chronic adaptations to Zone 2 training. For the sake of brevity, we have not provided specific detail of studies we judged to be “Zone 2 exercise” within the text of our review; however, full exercise prescription details for all studies discussed below are included in Table 1 of the Electronic Supplementary Material.

3 Defining Zone 2 Training

In a performance context, exercise intensity is divided into three domains, moderate, heavy, and severe, each exhibiting distinct physiological responses [29, 30]. Notably, this characterization and the associated terminology differs somewhat from the classification system commonly used in physical activity and exercise prescription guidelines [31]. The moderate-intensity domain, typically defined as exercise below LT1 [32], is characterized by a relatively high reliance on FAO, relatively low rates of glycogen depletion [33, 34], adenosine monophosphate (AMP)/adenosine diphosphate (ADP) accumulation [35], and phosphocreatine (PCr) breakdown [33, 36], and a mono-exponential increase in oxygen consumption [29, 37–39]. Zone 2 training, based on the definition provided via popular media as well as the low-intensity training practices of endurance athletes [11, 16, 31, 40], positions Zone 2 exercise within the moderate-intensity domain.

The upper boundary of Zone 2 (i.e., the threshold between the moderate- and heavy-intensity domain) ranges from $\sim 24\%$ to 80% of $\dot{V}O_{2\max}$ depending on fitness and training status [34, 41–44]. Exercise within Zone 2 can thus range from an approximately four-fold resting metabolic rate in sedentary individuals (e.g., walking at a normal pace or cycling at – or well below – 100W) [45–47] or exceed an approximately ten-fold resting metabolic rate in endurance athletes (e.g., cycling at ~ 300 watts [W] for an endurance athlete) [46]. These data demonstrate that the absolute intensities associated with Zone 2 can be vastly different between athletes and members of the general public.

4 Does Zone 2 Training Improve Mitochondrial Capacity?

Remodeling and expansion of the mitochondrial reticulum, increased mitochondrial capacity, and improved maintenance of intracellular energy homeostasis are classic adaptations to endurance training (ET) [48, 49]. Adaptive responses to training in muscle are triggered by contraction-induced increases in the AMP/ADP:adenosine triphosphate (ATP) ratio, intramuscular calcium ($[Ca^{2+}]_i$), reactive oxygen species, and redox balance ($NAD^+ : NADH$) [50] and the subsequent activation of cellular signaling molecules that include AMP-activated protein kinase (AMPK) and calcium/calmodulin serine/threonine kinase (CaMKII) [51]. In the following sections, we review the available literature examining the impact of Zone 2 exercise on mitochondrial biogenesis by focusing on: (1) intramuscular signals; (2) signaling response and gene expression; and (3) mitochondrial

capacity. Because long-duration low-intensity exercise has also been proposed to act primarily via calcium signaling [52], we also distinctly address the impact of Zone 2 training on the calcium signaling pathway.

4.1 Impact of Zone 2 on Intramuscular Metabolites

The available evidence demonstrates minimal changes in the muscle AMP/ADP:ATP ratio and/or indicators of energetic stress (e.g., reduced muscle [PCr] and increased muscle [lactate]) following Zone 2 exercise. For example, 200 min of Zone 2 exercise does not change ATP, ADP, or AMP in muscle of untrained adults [53]. The AMP:ATP ratios were also unaltered during and following Zone 2 exercise performed to exhaustion in young active men [54]. However, 2 h of Zone 2 exercise can induce small but statistically significant increases in the AMP/ADP:ATP ratio in endurance-trained men [55].

Decreases in [PCr], driven by increases in intracellular [ADP] [56], are sometimes absent during Zone 2 exercise [57]. However, declines in muscle [PCr] occur following both short (5 min) and long (120–211 min) durations of Zone 2 exercise [33, 54, 55, 58, 59]. Small increases in muscle lactate concentrations, indicative of elevated AMP/ADP and increased rates of glycolytic flux, are sometimes [55, 59] but not always [33, 53, 58] observed during Zone 2 exercise. Interestingly, and consistent with classic demonstrations of glycogen oxidation during low-intensity exercise [60, 61], prolonged Zone 2 exercise (2–3.5 h) decreases muscle glycogen [33, 53–55]. Because glycogen depletion is a mediator of AMPK activation [62], these results raise the possibility that Zone 2 may activate AMPK in the absence of large increases in AMP and/or ADP.

To our knowledge, changes in cellular redox potential and reactive oxygen species production during Zone 2 exercise have not been reported. Thus, our understanding of intramuscular signals in response to Zone 2 exercise is limited to relatively small and/or inconsistent changes in AMP/ADP, PCr, lactate/glycolysis, and intramuscular glycogen.

4.2 Impact of Zone 2 on Mitochondrial Biogenic Signaling and Gene Expression

The activation of AMPK in response to increased AMP/ADP [63], and potentially reduced muscle glycogen [62], is a primary signaling pathway involved in the initiation of mitochondrial biogenesis [64–66]. Exercise intensities that do not impose energetic disturbances (i.e., no change in AMP/ADP) appear to not increase AMPK signaling [35]. Thus, the negligible-to-small changes in the AMP/ADP:ATP ratio in response to Zone 2 exercise described above suggest that Zone 2 exercise may be below the intensity required to

activate AMPK. In agreement with this suggestion, Zone 2 exercise does not increase AMPK activity in endurance-trained men [55]. Zone 2 exercise also failed to alter the phosphorylation of AMPK or class II histone deacetylases, downstream targets of AMPK [67–69]. Conversely, although AMPK activity was unchanged following 2 h of Zone 2, it was elevated at exhaustion (~3.5 h) [54]. Interestingly, the phosphorylation of acetyl-CoA carboxylase, another downstream target of AMPK, increased 1 h into Zone 2 exercise before returning to baseline levels at later timepoints [54]. Similar increases in phosphorylation of acetyl-CoA carboxylase, in the absence of increased p-AMPK, were also observed following 65 min of exercise just above Zone 2 [69].

The effect of Zone 2 exercise on PGC-1 α , a downstream target of AMPK and a key transcriptional regulator of mitochondrial biogenesis [64], is unclear. No change in PGC-1 α gene expression was reported following 30 min [68, 70] and ~90 min [70] of Zone 2 exercise. Popov et al. also failed to observe changes in mitochondrial transcription factor A, mitochondrial transcription factor B2, as well as the mitochondrial genes citrate synthase (CS) and cytochrome C oxidase subunit II [68]. The well-trained status ($\dot{V}O_{2\text{max}}$ of 59 mL/min/kg) of participants in this study may partly explain the absence of a mitochondrial biogenic response. Supramaximal intensities may be required to induce mitochondrial adaptations in well-trained populations [71]. In contrast, increases in PGC-1 α messenger RNA expression — and additional genes involved in mitochondrial biogenesis — can occur following Zone 2 exercise [67–69, 72]. Duration-mediated effects have been reported for PGC-1 α gene expression with 60 and 90 min, but not 30 min of Zone 2 increasing expression [68]. In the only report examining the impact of Zone 2 on muscle protein synthesis we are aware of, a single bout of exercise failed to increase rates of mitochondrial protein synthesis [73].

Although the collective evidence is mixed (Fig. 2), Zone 2 exercise does appear capable of activating signaling pathways that initiate mitochondrial adaptations. However, future research is required to further clarify the impact of Zone 2 exercise on mitochondrial signaling pathways, including those beyond AMPK (e.g., sirtuin 1 and P38 mitogen-activated protein kinase).

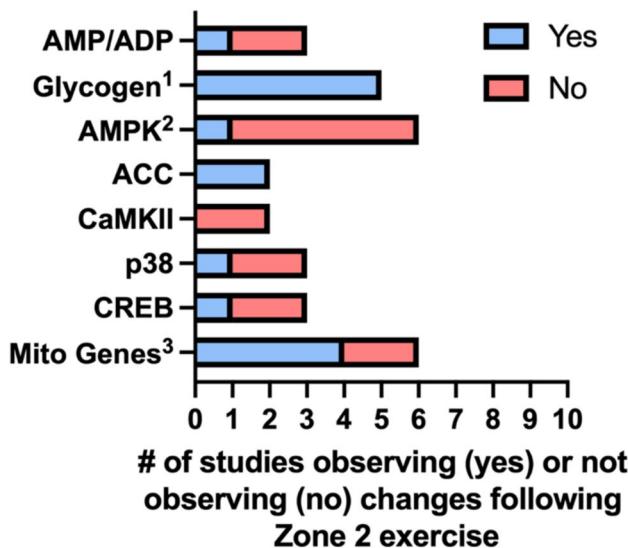
4.3 Does Zone 2 Training Improve Mitochondrial Capacity Via Calcium Signaling?

High volumes of low-intensity/Zone 2 training are proposed to induce mitochondrial adaptations through calcium signaling, while high-intensity training acts through differential mechanisms (i.e., AMPK signaling) [11, 52, 74]. This contention appears to be based on the theory [52] that repeated muscle contractions increase $[Ca^{2+}]_i$ and activate

mitochondrial biogenesis via CaMKII [75]. However, there is strong evidence that HIE activates both AMPK and CaMKII signaling pathways [20]. Thus, while Zone 2 exercise may activate mitochondrial adaptations primarily via CaMKII signaling, the idea that HIE initiates mitochondrial adaptations via distinct signaling pathways (i.e., only AMPK) is not supported by available evidence.

We are unaware of studies examining changes in $[Ca^{2+}]_i$ during or following Zone 2 exercise. There also appear to be few studies that have measured calcium signaling in response to Zone 2 exercise. Of the limited studies we could find, 65–70 min of Zone 2 training failed to increase p-CaMKII [67, 69]. However, mixed results are reported for downstream targets of CaMKII with phosphorylation of cyclic-AMP response element and p38 mitogen-activated protein kinase being increased [67] and unchanged [68, 69], respectively. Thus, it is unclear if or how Zone 2 training acutely activates calcium signaling.

A lack of data does not disprove the contention that elite endurance athletes benefit from high volumes of low-intensity exercise via calcium-mediated adaptation [74]. However, recommendations that the general population forgo higher intensity exercise in favor of Zone 2 appear to be


largely based on an unsubstantiated theory. Further research is needed to comprehensively define the impact of Zone 2 training on calcium signaling and elucidate the importance, if any, of calcium signaling in Zone 2-mediated mitochondrial adaptations in both endurance athletes and the general population.

4.4 Does Zone 2 Training Improve Mitochondrial Capacity?

Few studies have explicitly investigated the impact of Zone 2 training on mitochondrial outcomes and the available evidence is mixed. In support of Zone 2 training improving mitochondrial capacity, 10 weeks of twice-weekly training at an exercise intensity corresponding to FAT_{max} —possibly above Zone 2 as discussed below—increased CS activity and mitochondrial respiration in obese individuals with type 2 diabetes mellitus [76]. Additionally, 12 weeks of Zone 2 cycling three times-weekly low-intensity cycling that is characteristic of Zone 2 improved PCr recovery rates—a marker of mitochondrial capacity assessed via magnetic resonance spectroscopy—in both healthy male individuals and male individuals with type 2 diabetes [77]. In contrast, several studies do not support the ability of Zone 2 training to improve mitochondrial capacity. Four weeks of Zone 2 training did not increase CS activity or mitochondrial respiration in recreationally active men [78]. Five months of primarily (86% of training volume) Zone 2 training 7 days/week also failed to improve CS activity or succinate dehydrogenase activity in elite endurance athletes [79]. Finally, although exercise intensity was not confirmed with blood lactate measures, a 42-day skiing expedition requiring 6 h/day at $\sim 60\%$ maximum heart rate (HR_{max}) [a daily duration that strongly suggests Zone 2 intensity] reduced CS activity and mitochondrial respiration [80]. Similarly, following a 50-day ski expedition involving 5.5 h/day skiing at $\sim 45\% \dot{V} O_2max$, increases in CS were limited to arm muscles, with no effect observed in legs [81]. Importantly, results from a detailed meta-analysis of exercise intensity and mitochondrial adaptations suggest that exercise performed below 60% maximum work rate (an intensity likely equivalent to or above Zone 2 in most non-endurance-trained individuals) is not expected to improve mitochondrial content or mitochondrial respiratory capacity [19].

4.5 Is Zone 2 Training Optimal for Improving Mitochondrial Capacity?

Despite ongoing debate surrounding the role of intensity as a key mediator of exercise-induced mitochondrial adaptations [82, 83], it is well established that high-intensity interval

Fig. 2 Changes in intramuscular signals and mitochondrial biogenic signaling in response to Zone 2 exercise. Blue (yes) indicates an increase in the indicated outcome. Red (no) indicates no change or decrease in the indicated outcome. ¹Glycogen depletion observed with exercise > 120 min. ²Wojtaszewski et al., included for both “No” (2 h) and “Yes” (3.5 h) [54]. ³Popov et al., included for both “No” (30 min) and “Yes” (60 min, 90 min) [68]. ACC acetyl-CoA carboxylase, ADP adenosine diphosphate, AMP adenosine monophosphate, AMPK AMP-activated protein kinase, CaMKII calcium/calmodulin serine/threonine kinase II, CREB cyclic AMP response element-binding protein

training induces robust mitochondrial adaptations [25, 84, 85]. Exercise above Zone 2 results in greater changes in the AMP/ADP:ATP ratio [35, 86], declines in [PCr] [33, 55, 58, 59], increases in intramuscular lactate, and decreases in pH [33, 59]. Although long durations (~120–211 min) of Zone 2 exercise result in glycogen depletion [33, 55], rates of glycogen depletion increase with increasing exercise intensity [60, 61, 87].

Downstream mitochondrial signaling pathways are also activated to a greater extent following exercise intensities above Zone 2 [67, 69, 88]. Some studies demonstrate that *only* exercise performed above Zone 2 results in increased AMPK activation [55, 67, 69] and mitochondrial biogenic signaling is rapidly activated by HIE [89–91]. Furthermore, phosphorylation of phospholamban, a downstream target of CaMKII, does not increase following low- to moderate-intensity exercise (35% and 60% $\dot{V}O_2$ peak), but does increase with HIE (85% $\dot{V}O_2$ peak) [92]. Greater activation of CaMKII also occurs in response to “all out” sprints than 50 min of continuous exercise at 70% $\dot{V}O_2$ max [89]. Compared with Zone 2, work-matched exercise performed above Zone 2 induces greater increases in PGC-1 α gene expression and additional mitochondrial genes [70, 72]. Further, 5 months of high-intensity, but not Zone 2 training, increases succinate dehydrogenase activity in elite endurance athletes [79].

It is important to highlight that moderate-intensity continuous training (MICT) can induce improvements in mitochondrial capacity. For example, a recent meta-analysis showed improvements in mitochondrial content following ET that were only slightly less than those induced by higher intensity interval training [71]. However, because this meta-analysis defined ET as training conducted below an intensity equivalent to the second ventilatory threshold (i.e., below the severe-intensity domain), it remains unclear whether all ET, including that characteristic of Zone 2—or only that performed in the heavy-intensity domain (i.e., above Zone 2)—improves mitochondrial capacity. Results from another meta-analysis of 56 training studies suggest that exercise performed below 60% maximum work rate (an intensity likely equivalent to or above Zone 2 in most non-endurance-trained individuals) is not expected to improve mitochondrial content or mitochondrial respiratory capacity [19]. This meta-analysis also suggests that HIE (> 90% maximum work rate) and sprint interval training are most effective for increasing mitochondrial respiratory capacity [19, 82]. These results suggest that exercise performed above Zone 2 may be superior for inducing mitochondrial adaptations, directly contradicting the notion that Zone 2 training is the optimal intensity for such outcomes. It may be that the high mitochondrial capacity of elite endurance athletes is more related to their training spent above Zone 2 rather than their large volumes of Zone 2 training per se.

5 Does Zone 2 Training Improve Fatty Acid Oxidative Capacity?

Increased FAO capacity is a well-established adaptation to ET [48, 93]. Higher FAO reduces reliance on carbohydrate metabolism [50, 94, 95], is positively associated with athletic performance [96, 97], and correlates with greater cardiometabolic health [46, 98]. Thus, interventions that improve FAO capacity are of interest to athletes targeting endurance performance and to members of the general public seeking to prevent and/or treat cardiometabolic disease.

Zone 2 training has been positioned as the optimal intensity for improving FAO capacity and cardiometabolic health. This section first reviews studies examining the impact of Zone 2 training on the mechanism underlying improvements in FAO before addressing the question of whether Zone 2 training improves FAO capacity.

5.1 Impact of Zone 2 Training on Determinants of Fatty Acid Oxidative Capacity

Improved FAO following training is related to increases in: (1) mitochondrial capacity [97, 102]; (2) skeletal muscle capillary density [103, 104]; (3) intramuscular triglyceride (IMTG) storage and breakdown [105, 106]; (4) proportion of oxidative type I muscle fibers [104, 107]; and (5) enzymes involved in lipid metabolism and transport [97, 108, 109]. Because the impact of Zone 2 training on the induction of mitochondrial biogenesis and changes in mitochondrial capacity is limited (discussed in Sect. 4), any improvements in FAO capacity in response to Zone 2 training would presumably occur through alternative mechanisms (i.e., mechanisms 2–5 above).

Capillary density increases after 6 weeks of Zone 2 training in untrained non-obese men [110], whereas no change in skeletal muscle capillary density was observed after 42 days of large volumes of daily exercise at 60% HR_{max} [80]. No change in capillary density was also observed in leg muscles after 50 days of large volumes of skiing at an intensity equivalent to Zone 2, but was found in arm muscles [81]. Importantly, a recent meta-analysis concluded that low-intensity ET, likely encompassing Zone 2, does not increase capillary density or the capillary-to-fiber ratio [111]. We were unable to find studies directly investigating the impact of Zone 2 training on IMTG breakdown. However, low-intensity training characteristic of Zone 2 training tended to increase intramyocellular lipid content in male individuals with type 2 diabetes [77], and utilization of non-plasma fatty acid oxidation (which includes IMTGs) increased after 12 weeks of Zone 2 training in women [112] and men [113] with obesity. We found mixed results for the impact of Zone 2 training on type I (oxidative) muscle fiber percentage, with

one study demonstrating a positive effect (42 days of high-volume training at 60% HR_{max} [80]) and another failing to observe an effect after 6 weeks of Zone 2 training [110]. Similar to changes in capillary density, IMTGs, and fiber distribution, the impact of Zone 2 training-mediated changes on enzymes involved in the transport and utilization of fatty acids is equivocal. Four weeks of Zone 2 training induced non-significant ($p=0.07$) increases in resting skeletal muscle lipoprotein lipase activity [114] and 42 days of training at 60% HR_{max} failed to increase hydroxyacyl-CoA dehydrogenase (HAD) [80]. Although 50 days of large volumes of skiing at an intensity equivalent to Zone 2 (45% $\dot{V}O_{2\max}$) training increased HAD in arm muscles, Zone 2 training did not increase HAD in leg muscles [81]. Finally, 4 months of Zone 2 training did not change the protein content of collagen type I receptor (CD36), a key fatty acid transporter [115]. Thus, although Zone 2 can improve intramuscular determinants of FAO capacity, the literature in this area is limited and equivocal.

5.2 Does Zone 2 Training Improve Fatty Acid Oxidative Capacity?

Fatty acid oxidative capacity (typically calculated from the respiratory exchange ratio) is quantified as either the maximal rate of fatty acid oxidation (MFO) and/or the exercise intensity associated with MFO (FAT_{max}) [101, 116]. We were surprised to find only one study that measured rates of FAO following confirmed Zone 2 training ($[BLa] < 2.0 \text{ mmol/L}$). This study demonstrated increased FAT_{max} and MFO in previously sedentary adults following 1 year of Zone 2 training [117]. Similarly, albeit in studies where $[BLa]$ was not assessed, 12 weeks of cycling at 40% $\dot{V}O_{2\max}$ reduced the exercise respiratory exchange ratio and increased total fat oxidation rates in men with obesity [113] and in women with lower, but not upper, body obesity [112]. Although failing to reach significance ($p=0.06$), a tendency for increased rates of fat oxidation was also observed in healthy non-obese men following 12 weeks of training at 40% $\dot{V}O_{2\max}$ [114]. Although maximal mitochondrial respiratory capacity, ex vivo quantification, and mitochondrial content decreased, the contribution of fatty acid substrates to maximal mitochondrial respiration increased after 42 days of training at 60% HR_{max}, possibly suggesting improved FAO capacity [80].

In addition to the above data supporting the ability of Zone 2 and/or very low intensity training to improve FAO capacity, there is a body of work utilizing FAT_{max} as an anchor for exercise prescription. It is important to note that although Zone 2 occurs at FAT_{max} in healthy active populations [118], prescribing exercise at FAT_{max} in sedentary populations may result in exercise above Zone 2 [119]. Thus, studies prescribing exercise anchored to FAT_{max} may not

necessarily support/refute effects of Zone 2 training per se. Nonetheless, 2–12 weeks of training at FAT_{max} in overweight/obese adults increases MFO [120], increases FAT_{max} [76, 120–122], and lowers the respiratory exchange ratio during exercise [76, 123]. Similarly, 10–12 weeks of training at FAT_{max} improves FAT_{max} and increases fat oxidation rates during exercise in obese men with type 2 diabetes [76] and insulin-resistant men [121]. Thus, Zone 2 training does appear to increase fat oxidative capacity, although increases are likely limited to sedentary/untrained populations.

5.3 Is Zone 2 Training Optimal for Improving Fat Oxidative Capacity?

The evidence above suggests that Zone 2 training can increase FAO capacity in overweight, obese, and type 2 diabetic individuals. That said, this is also true of endurance exercise training at intensities greater than Zone 2 [93, 124–126]. However, unlike the body of evidence supporting exercise intensity-dependent improvements in mitochondrial capacity, the optimal training intensity for improving FAO capacity is less clear [116].

Regarding the mechanisms of FAO capacity besides mitochondrial capacity, 12 weeks of Zone 2 training, but not higher intensity training, increases non-plasma FAO during exercise in obese men [113], suggesting that Zone 2 training may be superior for increasing the contribution of IMTG to FAO during exercise. Conversely, a recent meta-analysis revealed that only exercise intensities above 50% $\dot{V}O_{2\max}$ are expected to increase capillarization in sedentary subjects [111], suggesting that Zone 2 training in some individuals may fall below the threshold for inducing increases in capillarization. Finally, although no direct comparisons to Zone 2 training have been made, HIE increases IMTG storage and oxidation during submaximal exercise [127, 128] and enzymes and proteins involved in fatty acid transport and oxidation including CD36 [126, 129, 130], carnitine palmitoyl transferase-1 [126, 131], FABP_{pm} [129, 130, 132], and β -HAD [129, 132, 133].

Training studies comparing exercise intensities above Zone 2 to those possibly equivalent to Zone 2 (FAT_{max} and $< 45\% \dot{V}O_{2\max}$) yield equivalent effects on FAO with some studies favoring Zone 2 training [113, 123, 134] and others higher exercise intensities [120, 135]. Two recent meta-analyses reported no differences in FAO capacity following high-intensity interval training and MICT [136], and small, but greater improvements with high-intensity interval training/sprint interval training compared with MICT [137] in obese and overweight adults but not normal weight adults. Importantly, it is likely that many of the MICT protocols including in these meta-analyses utilized intensities above Zone 2, highlighting the need for studies directly comparing Zone 2 to HIE.

An older meta-analysis demonstrating no effect of Zone 2 training on LT1—a proxy for FAO capacity [46, 118, 119]—suggests Zone 2 training may produce too minimal of a training stimulus to improve FAO capacity in trained individuals [138]. This meta-analysis suggests that trained individuals require high exercise intensities to improve LT1. At present, it remains unclear if there is an optimal exercise prescription for improving FAO capacity, and we are unaware of convincing data to support the contention that Zone 2 training produces greater increases in FAO capacity than higher exercise intensities.

6 Is Zone 2 Training Optimal for Health and Fitness?

Proponents of Zone 2 cite improvements in mitochondrial capacity as a main driver of improved cardiometabolic health [7, 100]. However, although mitochondrial capacity is linked to performance and cardiometabolic health [1–3], its links to cardiovascular disease and all-cause mortality risk are less established. Conversely, the evidence linking maximal aerobic capacity ($\dot{V}O_{2\max}$; CRF) with cardiometabolic disease and all-cause mortality risk is robust [139–145].

When impacts of Zone 2 and higher intensities of exercise on CRF are compared in untrained populations, there is no difference in improvements [146–153], greater improvements with higher exercise intensities [113, 120, 154–156], or only improvements with higher exercise intensities [114, 135]. Similarly, CRF only increases with training intensities above Zone 2 in healthy active [157, 158] and trained athletes [159–161]. Furthermore, for a fixed amount of exercise, higher exercise intensities result in greater improvements in CRF [21, 154] and additional markers of cardiometabolic health (e.g., glucose tolerance) [23].

It is important to note that although zone-based training is used by athletes and coaches for optimizing performance, governing bodies targeting health in the general public traditionally do not ascribe to zone-based exercise prescriptions (see Coates et al. [31] for a comprehensive summary and comparison of many classification models). Rather, public health exercise and physical activity recommendations classify exercise intensities as very light, light, moderate, vigorous, and near-maximal/maximal intensity exercise [162, 163]. The ACSM guidelines recommend accumulating a minimum of 150 min per week of moderate-intensity physical activity (3–5.9 metabolic equivalent of tasks [METs]) [6]. Because Zone 2 exercise can represent a wide range of relative and absolute exercise intensities (Fig. 1), with a potential range from light to vigorous depending on population fitness and training status, it is possible that Zone 2 training in unfit populations could involve exercising at an intensity that fails to meet the minimum intensity

recommended by ACSM physical activity guidelines [31]. Importantly, the ACSM guidelines recognize that 150 min per week of moderate-intensity exercise (e.g., Zone 2) may not be sufficient for improving CRF, suggesting that exercise intensity and/or duration be augmented when improvements in CRF are targeted [6].

Thus, despite Zone 2 training being positioned as the optimal exercise intensity for reducing the risk of chronic disease via its proposed benefits on mitochondrial health and FAO capacity [7, 100], the available evidence refutes the use of Zone 2 training as the optimal intensity for improving CRF—one of the strongest predictors of cardiometabolic disease risk [141]. Further, prioritizing higher intensities is unlikely to jeopardize mitochondrial benefits as exercise training protocols that increase $\dot{V}O_{2\max}$ also increase mitochondrial and FAO capacity [41, 104, 129, 164–166]. Thus, prioritizing HIE appears critical when designing exercise programs to improve CRF and reduce chronic disease risk, especially when training time is limited. Most importantly, given the clear intensity-dependent effect of exercise on CRF, members of the general public who replace HIE with Zone 2 exercise may risk minimizing the benefits of exercise on long-term health.

7 Summary and Conclusions

Evidence from acute studies demonstrates small and inconsistent activation of mitochondrial biogenic signaling following Zone 2 exercise. Further, the majority of the available evidence argues against the ability of Zone 2 training to increase mitochondrial capacity, a fact that refutes the current popular media narrative that Zone 2 training is optimal for mitochondrial adaptations. Left unchecked, the recommendations for members of the general public to prioritize Zone 2 training over higher exercise intensities—including continuous training in the heavy-intensity domain—limits potential improvements in mitochondrial capacity gained from accumulating volumes above Zone 2. Many gaps remain in our understanding of whether and how mitochondria adapt to Zone 2 training and more research directly studying the impact of Zone 2 training on mitochondrial capacity is required.

Zone 2 does appear to improve FAO capacity in untrained populations; however, pooled analyses suggest that higher exercise intensities may be favorable in untrained and potentially required in trained individuals. Importantly, major gaps in the literature exist, including the mechanisms by which Zone 2 training improves FAO and whether Zone 2 training improves FAO capacity across populations with different training and health status. We provide evidence that both low and high exercise training intensities improve FAO capacity, aligning with

converging mechanisms to explain improvements in FAO capacity in response to different exercise intensities. Thus, claims that Zone 2 training is optimal for improving FAO capacity are not supported by strong evidence and it does not appear that Zone 2 training elicits unique benefits for FAO capacity that cannot be achieved by HIE.

A major finding of the current review is that few studies have explicitly examined the effect of Zone 2 training. We therefore made our best attempt to include papers that aligned with the definition of Zone 2 as exercise within the moderate-intensity domain when writing this review. This limitation highlights the need for studies specifically designed to test hypotheses around Zone 2. For members of the general public attempting to meet physical activity guidelines, we believe prioritizing higher exercise intensities is critical to improve health [145, 167].

Supplementary Information The online version contains supplementary material available at <https://doi.org/10.1007/s40279-025-02261-y>.

Declarations

Funding Kristi L. Storoschuk is supported by a post-graduate scholarship (Doctoral) from the Natural Sciences and Engineering Research Council of Canada (NSERC). No specific sources of funding were used to assist in the preparation of this article.

Conflicts of Interest/Competing Interests Martin J. Gibala is an advisor to and holds equity in Longevity League, Ltd., a US-based company whose services in part relate to exercise. Kristi L. Storoschuk, Andres Moran-MacDonald, and Brendon J. Gurd have no conflicts of interest that are directly relevant to the content of this article.

Ethics Approval Not applicable.

Consent to Participate Not applicable.

Consent for Publication Not applicable.

Availability of Data and Material Not applicable.

Code Availability Not applicable.

Authors' Contributions KLS, MJG, and BJG conceived the idea for this review, KLS and BJG wrote the first draft, and AMM and MJG contributed to the writing of subsequent drafts and provided helpful suggestions and edits. All authors read and approved the final version.

References

1. Furrer R, Hawley JA, Handschin C. The molecular athlete: exercise physiology from mechanisms to medals. *Physiol Rev*. 2023;103:1693–787. <https://doi.org/10.1152/physrev.00017.2022>.
2. Hood DA, Memme JM, Oliveira AN, Triolo M. Maintenance of skeletal muscle mitochondria in health, exercise, and aging. *Annu Rev Physiol*. 2019;81:19–41. <https://doi.org/10.1146/annurev-physiol-020518-114310>.
3. Goodpaster BH, Sparks LM. Metabolic flexibility in health and disease. *Cell Metabol*. 2017;25:1027–36. <https://doi.org/10.1016/j.cmet.2017.04.015>.
4. Phielix E, Meex R, Ouwens DM, Sparks L, Hoeks J, Schaat G, et al. High oxidative capacity due to chronic exercise training attenuates lipid-induced insulin resistance. *Diabetes*. 2012;61:2472–8. <https://doi.org/10.2337/db11-1832>.
5. Kim J, Wei Y, Sowers JR. Role of Mitochondrial dysfunction in insulin resistance. *Circ Res*. 2008;102:401–14. <https://doi.org/10.1161/CIRCRESAHA.107.165472>.
6. Liguori G, Yuri F, Fountaine C, Roy B. ACSM'S guidelines for exercise testing and prescription. 11th ed. Philadelphia: Wolters Kluwer; 2022.
7. Attia P, Gifford B. Outlive: the science & art of longevity. New York: Harmony; 2023.
8. San Millan I. #201: deep dive back into Zone 2. (Pt. 2). 2022.
9. San Millan I, Attia P. Zone 2 training and metabolic health. 2019.
10. Quinn TJ, Coons BA. The Talk Test and its relationship with the ventilatory and lactate thresholds. *J Sports Sci*. 2011;29:1175–82. <https://doi.org/10.1080/02640414.2011.585165>.
11. Casado A, González-Mohín F, González-Ravé JM, Foster C. Training periodization, methods, intensity distribution, and volume in highly trained and elite distance runners: a systematic review. *Int J Sports Physiol Perform*. 2022;17:820–33. <https://doi.org/10.1123/ijsspp.2021-0435>.
12. Esteve-Lanao J, Juan AFS, Earnest CP, Foster C, Lucia A. How do endurance runners actually train? Relationship with competition performance. *Med Sci Sports Exerc*. 2005;37:496–504. <https://doi.org/10.1249/01.MSS.0000155393.78744.86>.
13. Gallo G, Mateo-March M, Gotti D, Maunder E, Codella R, Ruggeri P, et al. The weekly periodization of top 5 Tour de France general classification finishers: a multiple case study. *Int J Sports Physiol Perform*. 2023;18:1313–20. <https://doi.org/10.1123/ijsspp.2023-0142>.
14. Sanders D, Myers T, Akubat I. Training-intensity distribution in road cyclists: objective versus subjective measures. *Int J Sports Physiol Perform*. 2017;12:1232–7. <https://doi.org/10.1123/ijsspp.2016-0523>.
15. Seiler KS, Kjerland GØ. Quantifying training intensity distribution in elite endurance athletes: is there evidence for an “optimal” distribution? *Scand Med Sci Sports*. 2006;16:49–56. <https://doi.org/10.1111/j.1600-0838.2004.00418.x>.
16. Seiler S. What is best practice for training intensity and duration distribution in endurance athletes? *Int J Sports Physiol Perform*. 2010;5:276–91. <https://doi.org/10.1123/ijsspp.5.3.276>.
17. Foster C, Daniels JT, Seiler S. Perspectives on correct approaches to training. In: Lehmann M, Foster C, Gastmann U, Keizer H, Steinacker JM, editors. Overload, performance incompetence, and regeneration in sport. Boston (MA): Springer US; 1999: p. 27–41. https://doi.org/10.1007/978-0-585-34048-7_3.
18. Du Y, Liu B, Sun Y, Snetselaar LG, Wallace RB, Bao W. Trends in adherence to the *Physical Activity Guidelines for Americans* for aerobic activity and time spent on sedentary behavior among US Adults, 2007 to 2016. *JAMA Netw Open*. 2019;2: e197597. <https://doi.org/10.1001/jamanetworkopen.2019.7597>.
19. Granata C, Jamnick NA, Bishop DJ. Training-induced changes in mitochondrial content and respiratory function in human skeletal muscle. *Sports Med*. 2018;48:1809–28. <https://doi.org/10.1007/s40279-018-0936-y>.
20. Gurd BJ, Menezes ES, Arhen BB, Islam H. Impacts of altered exercise volume, intensity, and duration on the activation of AMPK and CaMKII and increases in PGC-1 α mRNA. *Semin Cell Dev Biol*. 2023;143:17–27. <https://doi.org/10.1016/j.semcd.2022.05.016>.

21. Ross R, De Lannoy L, Stotz PJ. Separate effects of intensity and amount of exercise on interindividual cardiorespiratory fitness response. *Mayo Clin Proc.* 2015;90:1506–14. <https://doi.org/10.1016/j.mayocp.2015.07.024>.

22. Türk Y, Theel W, Kasteleyn MJ, Franssen FME, Hiemstra PS, Rudolphus A, et al. High intensity training in obesity: a meta-analysis: high intensity training in obesity. *Obes Sci Pract.* 2017;3:258–71. <https://doi.org/10.1002/osp4.109>.

23. Ross R, Hudson R, Stotz PJ, Lam M. Effects of exercise amount and intensity on abdominal obesity and glucose tolerance in obese adults: a randomized trial. *Ann Intern Med.* 2015;162:325–34. <https://doi.org/10.7326/M14-1189>.

24. Shirooma EJ, Sesso HD, Moorthy MV, Buring JE, Lee I. Do moderate-intensity and vigorous-intensity physical activities reduce mortality rates to the same extent? *J Am Heart Assoc.* 2014;3: e000802. <https://doi.org/10.1161/JAHA.114.000802>.

25. MacInnis MJ, Gibala MJ. Physiological adaptations to interval training and the role of exercise intensity: training adaptations and the nature of the stimulus. *J Physiol.* 2017;595:2915–30. <https://doi.org/10.1113/JP273196>.

26. Atakan MM, Li Y, Koşar ŞN, Turnagöl HH, Yan X. Evidence-based effects of high-intensity interval training on exercise capacity and health: a review with historical perspective. *Int J Environ Res Public Health.* 2021;18:7201. <https://doi.org/10.3390/ijerph18137201>.

27. Jamnick NA, Botella J, Pyne DB, Bishop DJ. Manipulating graded exercise test variables affects the validity of the lactate threshold and $VO_{2\text{peak}}$. *PLoS ONE.* 2018;13: e0199794. <https://doi.org/10.1371/journal.pone.0199794>.

28. Skinner JS, McLellan TH. The transition from aerobic to anaerobic metabolism. *Res Q Exerc Sport.* 1980;51:234–48. <https://doi.org/10.1080/02701367.1980.10609285>.

29. Whipp BJ, Wasserman K. Oxygen uptake kinetics for various intensities of constant-load work. *J Appl Physiol.* 1972;33:351–6. <https://doi.org/10.1152/jappl.1972.33.3.351>.

30. Poole DC, Jones AM. Oxygen uptake kinetics. *Compr Physiol.* 2012;2(2):933–96. <https://doi.org/10.1002/cphy.c100072>.

31. Coates AM, Joyner MJ, Little JP, Jones AM, Gibala MJ. A perspective on high-intensity interval training for performance and health. *Sports Med.* 2023;53(Suppl. 1):85–96. <https://doi.org/10.1007/s40279-023-01938-6>.

32. Burnley M, Jones AM. Power–duration relationship: physiology, fatigue, and the limits of human performance. *Eur J Sport Sci.* 2016;18:1–12. <https://doi.org/10.1080/17461391.2016.1249524>.

33. Black MI, Jones AM, Blackwell JR, Bailey SJ, Wylie LJ, McDonagh STJ, et al. Muscle metabolic and neuromuscular determinants of fatigue during cycling in different exercise intensity domains. *J Appl Physiol.* 2017;122:446–59. <https://doi.org/10.1152/japplphysiol.00942.2016>.

34. Coyle EF, Coggan AR, Hopper MK, Walters TJ. Determinants of endurance in well-trained cyclists. *J Appl Physiol.* 1988;64:2622–30. <https://doi.org/10.1152/jappl.1988.64.6.2622>.

35. Chen Z-P, Stephens TJ, Murthy S, Canny BJ, Hargreaves M, Witters LA, et al. Effect of exercise intensity on skeletal muscle AMPK signaling in humans. *Diabetes.* 2003;52:2205–12. <https://doi.org/10.2337/diabetes.52.9.2205>.

36. Barstow TJ, Buchthal S, Zanconato S, Cooper DM. Muscle energetics and pulmonary oxygen uptake kinetics during moderate exercise. *J Appl Physiol.* 1994;77:1742–9. <https://doi.org/10.1152/jappl.1994.77.4.1742>.

37. Gaesser GA, Poole DC. The slow component of oxygen uptake kinetics in humans. *Exerc Sport Sci Rev.* 1996;24:35–71.

38. Meyer RA. A linear model of muscle respiration explains monoexponential phosphocreatine changes. *Am J Physiol.* 1988;254:C548–53. <https://doi.org/10.1152/ajpcell.1988.254.4.C548>.

39. Whipp BJ, Ward SA, Rossiter HB. Pulmonary O_2 uptake during exercise: conflating muscular and cardiovascular responses. *Med Sci Sports Exerc.* 2005;37:1574–85. <https://doi.org/10.1249/01.mss.0000177476.63356.22>.

40. Jamnick NA, Pettitt RW, Granata C, Pyne DB, Bishop DJ. An examination and critique of current methods to determine exercise intensity. *Sports Med.* 2020;50:1729–56. <https://doi.org/10.1007/s40279-020-01322-8>.

41. Cao L, Jiang Y, Li Q, Wang J, Tan S. Exercise training at maximal fat oxidation intensity for overweight or obese older women: a randomized study. *J Sports Sci Med.* 2019;18:413–8.

42. Demello JJ, Cureton KJ, Boineau RE, Singh MM. Ratings of perceived exertion at the lactate threshold in trained and untrained men and women. *Med Sci Sports Exerc.* 1987;19(4):354–62.

43. Henson LC, Poole DC, Whipp BJ. Fitness as a determinant of oxygen uptake response to constant-load exercise. *Eur J Appl Physiol.* 1989;59:21–8. <https://doi.org/10.1007/BF02396575>.

44. Jones NL, Ehrlsam RE. The anaerobic threshold. *Exerc Sport Sci Rev.* 1982;10:49–83.

45. Chávez-Guevara IA, Amaro-Gahete FJ, Ramos-Jiménez A, Brun JF. Toward exercise guidelines for optimizing fat oxidation during exercise in obesity: a systematic review and meta-regression. *Sports Med.* 2023;53:2399–416. <https://doi.org/10.1007/s40279-023-01897-y>.

46. San-Millán I, Brooks GA. Assessment of metabolic flexibility by means of measuring blood lactate, fat, and carbohydrate oxidation responses to exercise in professional endurance athletes and less-fit individuals. *Sports Med.* 2018;48:467–79. <https://doi.org/10.1007/s40279-017-0751-x>.

47. Wasserman K. Coupling of external to cellular respiration during exercise: the wisdom of the body revisited. *Am J Physiol.* 1994;266:E519–39. <https://doi.org/10.1152/ajpendo.1994.266.4.E519>.

48. Holloszy JO. Biochemical adaptations in muscle. *J Biol Chem.* 1967;242:2278–82. [https://doi.org/10.1016/S0021-9258\(18\)96046-1](https://doi.org/10.1016/S0021-9258(18)96046-1).

49. Holloszy JO, Coyle EF. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. *J Appl Physiol.* 1984;56:831–8. <https://doi.org/10.1152/jappl.1984.56.4.831>.

50. Egan B, Sharples AP. Molecular responses to acute exercise and their relevance for adaptations in skeletal muscle to exercise training. *Physiol Rev.* 2023;103:2057–170. <https://doi.org/10.1152/physrev.00054.2021>.

51. Islam H, Bonafiglia JT, Granata C, Gurd BJ. Exercise-induced mitochondrial biogenesis: molecular regulation, impact of training, and influence on exercise performance. In: Tiidus PM, MacPherson REK, LeBlanc PJ, Josse AR, editors. *The Routledge handbook on biochemistry of exercise.* 1st ed. New York: Routledge; 2020. p. 143–61. <https://doi.org/10.4324/9781003123835-9>.

52. Laursen PB. Training for intense exercise performance: high-intensity or high-volume training? *Scand Med Sci Sports.* 2010;20:1–10. <https://doi.org/10.1111/j.1600-0838.2010.01184.x>.

53. Febbraio MA, Dancey J. Skeletal muscle energy metabolism during prolonged, fatiguing exercise. *J Appl Physiol.* 1999;87:2341–7. <https://doi.org/10.1152/jappl.1999.87.6.2341>.

54. Wojtaszewski JFP, Mourtzakis M, Hillig T, Saltin B, Pilegaard H. Dissociation of AMPK activity and ACCb phosphorylation in human muscle during prolonged exercise. *Biochem Biophys Res Commun.* 2002;298(3):309–16.

55. McConell GK, Wadley GD, Le Plastrier K, Linden KC. Skeletal muscle AMPK is not activated during 2 h of moderate intensity exercise at ~65% in endurance trained men. *J Physiol.* 2020;598:3859–70. <https://doi.org/10.1113/JP277619>.

56. McMahon S, Jenkins D. Factors affecting the rate of phosphocreatine resynthesis following intense exercise. *Sports Med.* 2002;32:761–84. <https://doi.org/10.2165/00007256-20023210-00002>.

57. Näveri H, Kuoppasalmi K, Häkkinen M. Metabolic and hormonal changes in moderate and intense long-term running exercises. *Int J Sports Med.* 1985;6:276–81. <https://doi.org/10.1055/s-2008-1025851>.

58. Ivy JL, Chi MM, Hintz CS, Sherman WM, Hellendall RP, Lowry OH. Progressive metabolite changes in individual human muscle fibers with increasing work rates. *Am J Physiol.* 1987;252:C630–9. <https://doi.org/10.1152/ajpcell.1987.252.6.C630>.

59. Rusko H, Luhtanen P, Rakhila P, Viitasalo J, Rehunen S, Häkkinen M. Muscle metabolism, blood lactate and oxygen uptake in steady state exercise at aerobic and anaerobic thresholds. *Eur J Appl Physiol.* 1986;55:181–6. <https://doi.org/10.1007/BF00715002>.

60. Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Enderle M, et al. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. *Am J Physiol.* 1993;265:E380–91. <https://doi.org/10.1152/ajpendo.1993.265.3.E380>.

61. Van Loon LJC, Greenhaff PL, Constantin-Teodosiu D, Saris WHM, Wagenmakers AJM. The effects of increasing exercise intensity on muscle fuel utilisation in humans. *J Physiol.* 2001;536:295–304. <https://doi.org/10.1111/j.1469-7793.2001.00295.x>.

62. McBride A, Ghilagaber S, Nikolaev A, Hardie DG. The glycogen-binding domain on the AMPK β subunit allows the kinase to act as a glycogen sensor. *Cell Metab.* 2009;9:23–34. <https://doi.org/10.1016/j.cmet.2008.11.008>.

63. Gowans GJ, Hawley SA, Ross FA, Hardie DG. AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation. *Cell Metab.* 2013;18:556–66. <https://doi.org/10.1016/j.cmet.2013.08.019>.

64. Fernandez-Marcos PJ, Auwerx J. Regulation of PGC-1 α , a nodal regulator of mitochondrial biogenesis. *Am J Clin Nutr.* 2011;93:884S–S890. <https://doi.org/10.3945/ajcn.110.001917>.

65. Jäger S. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1 α . *PNAS* 2007. Available from: https://www-pnas-org.proxy.queensu.ca/doi/https://doi.org/10.1073/pnas.0705070104?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed. Accessed 6 Jul 2023.

66. Reznick RM, Shulman GI. The role of AMP-activated protein kinase in mitochondrial biogenesis. *J Physiol.* 2006;574:33–9. <https://doi.org/10.1113/jphysiol.2006.109512>.

67. Egan B, Carson BP, Garcia-Roves PM, Chibalin AV, Sarsfield FM, Barron N, et al. Exercise intensity-dependent regulation of peroxisome proliferator-activated receptor γ coactivator-1 α mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle: exercise intensity and PGC-1 α regulation. *J Physiol.* 2010;588:1779–90. <https://doi.org/10.1113/jphysiol.2010.188011>.

68. Popov D, Lysenko EA, Miller TF, Bachinini AV, Perfilov DV, Vinogradova OL. The effect of single aerobic exercise on the regulation of mitochondrial biogenesis in skeletal muscles of trained men: a time-course study. *Hum Physiol.* 2015;41:296–303. <https://doi.org/10.1134/S0362119715030123>.

69. Popov D, Lysenko EA, Vepkhvadze TF, Kurochkina NS, Maknoscik PA, Vinogradova OL. Promoter-specific regulation of PPARGC1A gene expression in human skeletal muscle. *J Mol Endocrinol.* 2015;55:159–68. <https://doi.org/10.1530/JME-15-0150>.

70. Tobina T, Yoshioka K, Hirata A, Mori S, Kiyonaga A, Tanaka H. Peroxisomal proliferator-activated receptor gamma co-activator-1 alpha gene expression increases above the lactate threshold in human skeletal muscle. *J Sports Med Phys Fitness.* 2011;51:683–8.

71. Mølmen KS, Almquist NW, Skattebo Ø. Effects of exercise training on mitochondrial and capillary growth in human skeletal muscle: a systematic review and meta-regression. *Sports Med.* 2025;55:115–44. <https://doi.org/10.1007/s40279-024-02120-2>.

72. Popov D, Zinovkin R, Karger E, Tarasova O, Vinogradova O. Effects of continuous and intermittent aerobic exercise upon mRNA expression of metabolic genes in human skeletal muscle. *J Sports Med Phys Fitness.* 2014;54:362–9.

73. Di Donato DM, West DWD, Churchward-Venne TA, Breen L, Baker SK, Phillips SM. Influence of aerobic exercise intensity on myofibrillar and mitochondrial protein synthesis in young men during early and late postexercise recovery. *Am J Physiol.* 2014;306:E1025–32. <https://doi.org/10.1152/ajpendo.00487.2013>.

74. Seiler KS. It's about the long game, not epic workouts: unpacking HIIT for endurance athletes. *Appl Physiol Nutr Metab.* 2024;49:1585–99. <https://doi.org/10.1139/apnm-2024-0012>.

75. Rose AJ, Frøsig C, Kiens B, Wojtaszewski JFP, Richter EA. Effect of endurance exercise training on Ca^{2+} calmodulin-dependent protein kinase II expression and signalling in skeletal muscle of humans. *J Physiol.* 2007;583:785–95. <https://doi.org/10.1113/jphysiol.2007.138529>.

76. Bordenave S, Metz L, Flavier S, Lambert K, Ghanassia E, Dupuy A-M, et al. Training-induced improvement in lipid oxidation in type 2 diabetes mellitus is related to alterations in muscle mitochondrial activity: effect of endurance training in type 2 diabetes. *Diabetes Metab.* 2008;34:162–8. <https://doi.org/10.1016/j.diabet.2007.11.006>.

77. Meex RCR, Schrauwen-Hinderling VB, Moonen-Kornips E, Schaart G, Mensink M, Phielix E, et al. Restoration of muscle mitochondrial function and metabolic flexibility in type 2 diabetes by exercise training is paralleled by increased myocellular fat storage and improved insulin sensitivity. *Diabetes.* 2010;59:572–9. <https://doi.org/10.2337/db09-1322>.

78. Granata C, Oliveira RSF, Little JP, Renner K, Bishop DJ. Training intensity modulates changes in PGC-1 α and p53 protein content and mitochondrial respiration, but not markers of mitochondrial content in human skeletal muscle. *FASEB J.* 2016;30:959–70. <https://doi.org/10.1096/fj.15-276907>.

79. Evertsen F, Medbo JI, Jebens E, Gjøvaag TF. Effect of training on the activity of five muscle enzymes studied on elite cross-country skiers. *Acta Physiol Scand.* 1999;167:247–57.

80. Boushel R, Gnaiger E, Larsen FJ, Helge JW, González-Alonso J, Ara I, et al. Maintained peak leg and pulmonary VO_2 despite substantial reduction in muscle mitochondrial capacity. *Scand Med Sci Sports.* 2015;25:135–43. <https://doi.org/10.1111/sms.12613>.

81. Schantz P, Henriksson J, Jansson E. Adaptation of human skeletal muscle to endurance training of long duration. *Clin Physiol.* 1983;3:141–51. <https://doi.org/10.1111/j.1475-097X.1983.tb00685.x>.

82. Bishop DJ, Botella J, Granata C. CrossTalk opposing view: exercise training volume is more important than training intensity to promote increases in mitochondrial content. *J Physiol.* 2019;597:4115. <https://doi.org/10.1113/JP277634>.

83. MacInnis MJ, Skelly LE, Gibala MJ. CrossTalk proposal: exercise training intensity is more important than volume to promote increases in human skeletal muscle mitochondrial content. *J Physiol.* 2019;597:4111. <https://doi.org/10.1113/JP277633>.

84. Bishop DJ, Botella J, Genders AJ, Lee MJ-C, Saner NJ, Kuang J, et al. High-intensity exercise and mitochondrial biogenesis:

current controversies and future research directions. *Physiology*. 2019;34:56–70. <https://doi.org/10.1152/physiol.00038.2018>.

85. Torma F, Gombos Z, Jokai M, Takeda M, Mimura T, Radak Z. High intensity interval training and molecular adaptive response of skeletal muscle. *Sports Med Health Sci*. 2019;1:24–32. <https://doi.org/10.1016/j.smhs.2019.08.003>.
86. Howlett RA, Parolin ML, Dyck DJ, Hultman E, Jones NL, Heigenhauser GJF, et al. Regulation of skeletal muscle glycogen phosphorylase and PDH at varying exercise power outputs. *Am J Physiol*. 1998;275:R418–25. <https://doi.org/10.1152/ajpregu.1998.275.2.R418>.
87. Vigh-Larsen JF, Ørtenblad N, Spriet LL, Overgaard K, Mohr M. Muscle glycogen metabolism and high-intensity exercise performance: a narrative review. *Sports Med*. 2021;51:1855–74. <https://doi.org/10.1007/s40279-021-01475-0>.
88. Wojtaszewski JFP, Nielsen P, Hansen BF, Richter EA, Kiens B. Isoform-specific and exercise intensity-dependent activation of 5'-AMP-activated protein kinase in human skeletal muscle. *J Physiol*. 2000;528:221–6. <https://doi.org/10.1111/j.1469-7793.2000.t01-1-00221.x>.
89. Fiorenza M, Gunnarsson TP, Hostrup M, Iaia FM, Schena F, Pilegaard H, et al. Metabolic stress-dependent regulation of the mitochondrial biogenic molecular response to high-intensity exercise in human skeletal muscle. *J Physiol*. 2018;596:2823–40. <https://doi.org/10.1113/JP275972>.
90. Gibala MJ, McGee SL, Garnham AP, Howlett KF, Snow RJ, Har-greaves M. Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1 α in human skeletal muscle. *J Appl Physiol*. 2009;106:929–34. <https://doi.org/10.1152/japplphysiol.90880.2008>.
91. Gillen JB, Martin BJ, MacInnis MJ, Skelly LE, Tarnopolsky MA, Gibala MJ. Twelve weeks of sprint interval training improves indices of cardiometabolic health similar to traditional endurance training despite a five-fold lower exercise volume and time commitment. *PLoS ONE*. 2016;11: e0154075. <https://doi.org/10.1371/journal.pone.0154075>.
92. Rose AJ, Bisiani B, Vistisen B, Kiens B, Richter EA. Skeletal muscle eEF2 and 4EBP1 phosphorylation during endurance exercise is dependent on intensity and muscle fiber type. *Am J Physiol*. 2009;296:R326–33. <https://doi.org/10.1152/ajpregu.90806.2008>.
93. Henriksson J. Training induced adaptation of skeletal muscle and metabolism during submaximal exercise. *J Physiol*. 1977;270:661–75. <https://doi.org/10.1113/jphysiol.1977.sp011974>.
94. Dandanell S, Meinild-Lundby A, Andersen AB, Lang PF, Oberholzer L, Keiser S, et al. Determinants of maximal whole-body fat oxidation in elite cross-country skiers: role of skeletal muscle mitochondria. *Scand Med Sci Sports*. 2018;28:2494–504. <https://doi.org/10.1111/smss.13298>.
95. Friedlander AL, Casazza GA, Horning MA, Buddinger TF, Brooks GA. Effects of exercise intensity and training on lipid metabolism in young women. *Am J Physiol*. 1998;275:E853–63. <https://doi.org/10.1152/ajpendo.1998.275.5.E853>.
96. Frandsen J, Vest S, Larsen S, Dela F, Helge J. Maximal fat oxidation is related to performance in an ironman triathlon. *Int J Sports Med*. 2017;38:975–82. <https://doi.org/10.1055/s-0043-117178>.
97. Mauder E, Plews DJ, Wallis GA, Brick MJ, Leigh WB, Chang W-L, et al. Peak fat oxidation is positively associated with vastus lateralis CD36 content, fed-state exercise fat oxidation, and endurance performance in trained males. *Eur J Appl Physiol*. 2022;122:93–102. <https://doi.org/10.1007/s00421-021-04820-3>.
98. Kelley DE, Goodpaster B, Wing RR, Simoneau J-A. Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. *Am J Physiol*. 1999;277:E1130–41. <https://doi.org/10.1152/ajpendo.1999.277.6.E1130>.
99. Bircher S, Knechtle B, Müller G, Knecht H. Is the highest fat oxidation rate coincident with the anaerobic threshold in obese women and men? *Eur J Sport Sci*. 2005;5:79–87. <https://doi.org/10.1080/17461390500167078>.
100. Brun J-F, Myzia J, Varlet-Marie E, Raynaud De Mauverger E, Mercier J. Beyond the calorie paradigm: taking into account in practice the balance of fat and carbohydrate oxidation during exercise? *Nutrients*. 2022;14:1605. <https://doi.org/10.3390/nu14081605>.
101. Jeukendrup A, Achten J. Fatmax: a new concept to optimize fat oxidation during exercise? *Eur J Sport Sci*. 2001;1:1–5. <https://doi.org/10.1080/17461390100071507>.
102. Sahlin K, Mogensen M, Bagger M, Fernström M, Pedersen PK. The potential for mitochondrial fat oxidation in human skeletal muscle influences whole body fat oxidation during low-intensity exercise. *Am J Physiol*. 2007;292:E223–30. <https://doi.org/10.1152/ajpendo.00266.2006>.
103. Hellsten Y, Gliemann L. Peripheral limitations for performance: muscle capillarization. *Scand J Med Sci Sports*. 2024;34: e14442. <https://doi.org/10.1111/smss.14442>.
104. Shaw CS, Swinton C, Morales-Scholz MG, McRae N, Erftemeyer T, Aldous A, et al. Impact of exercise training status on the fiber type-specific abundance of proteins regulating intramuscular lipid metabolism. *J Appl Physiol*. 2020;128:379–89. <https://doi.org/10.1152/japplphysiol.00797.2019>.
105. Horowitz JF, Klein S. Lipid metabolism during endurance exercise. *Am J Clin Nutr*. 2000;72:558S–S563. <https://doi.org/10.1093/ajcn/72.2.558S>.
106. Moro C, Bajpeyi S, Smith SR. Determinants of intramyocellular triglyceride turnover: implications for insulin sensitivity. *Am J Physiol*. 2008;294:E203–13. <https://doi.org/10.1152/ajpendo.00624.2007>.
107. Goedecke JH, Gibson ASC, Grobler L, Collins M, Noakes TD, Lambert EV. Determinants of the variability in respiratory exchange ratio at rest and during exercise in trained athletes. *Am J Physiol*. 2000;279:E1325–34. <https://doi.org/10.1152/ajpendo.2000.279.6.E1325>.
108. Purdom T, Kravitz L, Dokladny K, Mermier C. Understanding the factors that effect maximal fat oxidation. *J Int Soc Sports Nutr*. 2018;15:3. <https://doi.org/10.1186/s12970-018-0207-1>.
109. Tunstall RJ, Mehan KA, Hargreaves M, Spriet LL, Cameron-Smith D. Fasting activates the gene expression of UCP3 independent of genes necessary for lipid transport and oxidation in skeletal muscle. *Biochem Biophys Res Commun*. 2002;294:301–8.
110. Shono N, Urata H, Saltin B, Mizuno M, Harada T, Shindo M, et al. Effects of low intensity aerobic training on skeletal muscle capillary and blood lipoprotein profiles. *J Atheroscler Thromb*. 2001;9:78–85.
111. Liu Y, Christensen PM, Hellsten Y, Gliemann L. Effects of exercise training intensity and duration on skeletal muscle capillarization in healthy subjects: a meta-analysis. *Med Sci Sports Exerc*. 2022;54:1714–28. <https://doi.org/10.1249/MSS.00000000000002955>.
112. Van Aggel-Leijssen DP, Saris WH, Wagenmakers AJ, Hul GB, Van Baak MA. The effect of low-intensity exercise training on fat metabolism of obese women. *Obes Res*. 2001;9:86–96. <https://doi.org/10.1038/oby.2001.11>.
113. Van Aggel-Leijssen DPC, Saris WHM, Wagenmakers AJM, Senden JM, Van Baak MA. Effect of exercise training at different intensities on fat metabolism of obese men. *J Appl Physiol*. 2002;92:1300–9. <https://doi.org/10.1152/japplphysiol.00030.2001>.
114. Schrauwen P, Van Aggel-Leijssen DPC, Hul G, Wagenmakers AJM, Vidal H, Saris WHM, et al. The effect of a 3-month low-intensity endurance training program on fat

oxidation and acetyl-CoA Ccrboxylase-2 expression. *Diabetes*. 2002;51:2220–6. <https://doi.org/10.2337/diabetes.51.7.2220>.

115. Fritz T, Krämer DK, Karlsson HKR, Galuska D, Engfeldt P, Zierath JR, et al. Low-intensity exercise increases skeletal muscle protein expression of PPAR δ and UCP3 in type 2 diabetic patients. *Diabetes Metab Res Rev*. 2006;22:492–8. <https://doi.org/10.1002/dmrr.656>.

116. Mauder E, Plews DJ, Kilding AE. Contextualising maximal fat oxidation during exercise: determinants and normative values. *Front Physiol*. 2018;9:599. <https://doi.org/10.3389/fphys.2018.00599>.

117. Scharhag-Rosenberger F, Meyer T, Walitzek S, Kindermann W. Effects of one year aerobic endurance training on resting metabolic rate and exercise fat oxidation in previously untrained men and women: metabolic endurance training adaptations. *Int J Sports Med*. 2010;31:498–504. <https://doi.org/10.1055/s-0030-1249621>.

118. Achten J, Jeukendrup AE. Relation between plasma lactate concentration and fat oxidation rates over a wide range of exercise intensities. *Int J Sports Med*. 2004;25:32–7. <https://doi.org/10.1055/s-2003-45231>.

119. Bircher S, Knechtle B. Relationship between fat oxidation and lactate threshold in athletes and obese women and men. *J Sports Sci Med*. 2004;3:174–81.

120. Lanzi S, Codecasa F, Cornacchia M, Maestrini S, Capodaglio P, Brunani A, et al. Short-term HIIT and Fat $_{\text{max}}$ training increase aerobic and metabolic fitness in men with class II and III obesity. *Obesity*. 2015;23:1987–94. <https://doi.org/10.1002/oby.21206>.

121. Dumortier M, Brandou F, Perez-Martin A, Fedou C, Mercier J, Brun J. Low intensity endurance exercise targeted for lipid oxidation improves body composition and insulin sensitivity in patients with the metabolic syndrome. *Diabetes Metab*. 2003;29:509–18. [https://doi.org/10.1016/S1262-3636\(07\)70065-4](https://doi.org/10.1016/S1262-3636(07)70065-4).

122. Tan S, Wang J, Cao L, Guo Z, Wang Y. Positive effect of exercise training at maximal fat oxidation intensity on body composition and lipid metabolism in overweight middle-aged women. *Clin Physiol Funct Imaging*. 2014;36:225–30. <https://doi.org/10.1111/cpf.12217>.

123. Venables MC, Jeukendrup AE. Endurance training and obesity: effect on substrate metabolism and insulin sensitivity. *Med Sci Sports Exerc*. 2008;40:495–502. <https://doi.org/10.1249/MSS.0b013e31815f256f>.

124. Astorino TA, Schubert MM. Changes in fat oxidation in response to various regimes of high intensity interval training (HIIT). *Eur J Appl Physiol*. 2018;118:51–63. <https://doi.org/10.1007/s00421-017-3756-0>.

125. Rosenkilde M, Reichkendler MH, Auerbach P, Bonne TC, Sjödin A, Ploug T, et al. Changes in peak fat oxidation in response to different doses of endurance training. *Scand Med Sci Sports*. 2015;25:41–52. <https://doi.org/10.1111/sms.12151>.

126. Tunstall RJ, Mehan KA, Wadley GD, Collier GR, Bonen A, Hargreaves M, et al. Exercise training increases lipid metabolism gene expression in human skeletal muscle. *Am J Physiol*. 2002;283:E66–72. <https://doi.org/10.1152/ajpendo.00475.2001>.

127. Scribbans TD, Edgett BA, Vorobej K, Mitchell AS, Joanisse SD, Matusiak JBL, et al. Fibre-specific responses to endurance and low volume high intensity interval training: striking similarities in acute and chronic adaptation. *PLoS ONE*. 2014;9: e98119. <https://doi.org/10.1371/journal.pone.0098119>.

128. Shepherd SO, Cocks M, Tipton KD, Ranasinghe AM, Barker TA, Burniston JG, et al. Sprint interval and traditional endurance training increase net intramuscular triglyceride breakdown and expression of perilipin 2 and 5. *J Physiol*. 2013;591:657–75. <https://doi.org/10.1113/jphysiol.2012.240952>.

129. Perry CGR, Heigenhauser GJF, Bonen A, Spriet LL. High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle. *Appl Physiol Nutr Metab*. 2008;33:1112–23. <https://doi.org/10.1139/H08-097>.

130. Talanian JL, Holloway GP, Snook LA, Heigenhauser GJF, Bonen A, Spriet LL. Exercise training increases sarcolemmal and mitochondrial fatty acid transport proteins in human skeletal muscle. *Am J Physiol*. 2010;299:E180–8. <https://doi.org/10.1152/ajpen.00073.2010>.

131. Ryan BJ, Schleh MW, Ahn C, Ludzki AC, Gillen JB, Varshney P, et al. Moderate-intensity exercise and high-intensity interval training affect insulin sensitivity similarly in obese adults. *J Clin Endocrinol Metab*. 2020;105:e2941–59. <https://doi.org/10.1210/clinem/dgaa345>.

132. Talanian JL, Galloway SDR, Heigenhauser GJF, Bonen A, Spriet LL. Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. *J Appl Physiol*. 2007;102:1439–47. <https://doi.org/10.1152/japplphysiol.01098.2006>.

133. Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, MacDonald MJ, McGee SL, et al. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans: metabolic adaptations to sprint or endurance training in humans. *J Physiol*. 2008;586:151–60. <https://doi.org/10.1113/jphysiol.2007.142109>.

134. Besnier F, Lenclume V, Gérardin P, Fianu A, Martinez J, Naty N, et al. Individualized exercise training at maximal fat oxidation combined with fruit and vegetable-rich diet in overweight or obese women: the LIPOXmax-Réunion randomized controlled trial. *PLoS ONE*. 2015;10: e0139246. <https://doi.org/10.1371/journal.pone.0139246>.

135. Lazzer S, Lafortuna C, Busti C, Galli R, Agosti F, Sartorio A. Effects of low- and high-intensity exercise training on body composition and substrate metabolism in obese adolescents. *J Endocrinol Invest*. 2011;34:45–52. <https://doi.org/10.1007/BF03346694>.

136. Yin M, Chen Z, Nassis GP, Liu H, Li H, Deng J, et al. Chronic high-intensity interval training and moderate-intensity continuous training are both effective in increasing maximum fat oxidation during exercise in overweight and obese adults: a meta-analysis. *J Exerc Sci Fitness*. 2023;21:354–65. <https://doi.org/10.1016/j.jesf.2023.08.001>.

137. Atakan MM, Guzel Y, Shrestha N, Kosar SN, Grgic J, Astorino TA, et al. Effects of high-intensity interval training (HIIT) and sprint interval training (SIT) on fat oxidation during exercise: a systematic review and meta-analysis. *Br J Sports Med*. 2022;56:988–96. <https://doi.org/10.1136/bjsports-2021-105181>.

138. Londeree BR. Effect of training on lactate/ventilatory thresholds: a meta-analysis. *Med Sci Sports Exerc*. 1997;29:837–43. <https://doi.org/10.1097/00005768-199706000-00016>.

139. Chuang M-L, Wang Y-H. Tidal volume expandability and ventilatory efficiency as predictors of mortality in Taiwanese male patients with chronic obstructive pulmonary disease: a 10-year follow-up study. Is VO₂peak or FEV1% the gold standard? *Chron Respir Dis*. 2023;20:14799731231220676. <https://doi.org/10.1177/14799731231220675>.

140. Grazzi G, Myers J, Bernardi E, Terranova F, Grossi G, Codecà L, et al. Association between VO₂ peak estimated by a 1-km treadmill walk and mortality: a 10-year follow-up study in patients with cardiovascular disease. *Int J Cardiol*. 2014;173:248–52. <https://doi.org/10.1016/j.ijcard.2014.02.039>.

141. Harber MP, Kaminsky LA, Arena R, Blair SN, Franklin BA, Myers J, et al. Impact of cardiorespiratory fitness on all-cause and disease-specific mortality: advances since 2009. *Prog Cardiovasc Dis*. 2017;60:11–20. <https://doi.org/10.1016/j.pcad.2017.03.001>.

142. Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. *JAMA*. 2009;301:2024–35. <https://doi.org/10.1001/jama.2009.681>.

143. Kumutsor SK, Kurl S, Khan H, Zaccardi F, Laukkonen JA. Associations of cardiovascular and all-cause mortality events with oxygen uptake at ventilatory threshold. *Int J Cardiol*. 2017;236:444–50. <https://doi.org/10.1016/j.ijcard.2017.01.156>.

144. Mandsager K, Harb S, Cremer P, Phelan D, Nissen SE, Jaber W. Association of cardiorespiratory fitness with long-term mortality among adults undergoing exercise treadmill testing. *JAMA Netw Open*. 2018;1: e183605. <https://doi.org/10.1001/jamanetworkopen.2018.3605>.

145. Schwendiger F, Infanger D, Lichtenstein E, Hinrichs T, Knaier R, Rowlands AV, et al. Intensity or volume: the role of physical activity in longevity. *Eur J Prev Cardiol*. 2025;32:10–9. <https://doi.org/10.1093/eurjpc/zwae295>.

146. Belman MJ, Gaesser GA. Exercise training below and above the lactate threshold in the elderly. *Med Sci Sports Exerc*. 1991;23:562–8.

147. Casaburi R, Storer TW, Sullivan CS, Wasserman K. Evaluation of blood lactate elevation as an intensity criterion for exercise training. *Med Sci Sports Exerc*. 1995;27:852.

148. Gaesser GA, Rich RG. Effects of high- and low-intensity exercise training on aerobic capacity and blood lipids. *Med Sci Sports Exerc*. 1984;16:269–74.

149. McNicol AJ, O'Brien BJ, Paton CD, Knez WL. The effects of increased absolute training intensity on adaptations to endurance exercise training. *J Sci Med Sport*. 2009;12:485–9. <https://doi.org/10.1016/j.jsams.2008.03.001>.

150. Ocel JV, Miller LE, Pierson LM, Wootten DF, Hawkins BJ, Myers J, et al. Adaptation of pulmonary oxygen consumption slow component following 6 weeks of exercise training above and below the lactate threshold in untrained men. *Chest*. 2003;124:2377–83. <https://doi.org/10.1378/chest.124.6.2377>.

151. Poole DC, Gaesser GA. Response of ventilatory and lactate thresholds to continuous and interval training. *J Appl Physiol*. 1985;58:1115–21. <https://doi.org/10.1152/jappl.1985.58.4.1115>.

152. Silva HJG, Andersen LB, Lofrano-Prado MC, Barros MVG, Freitas IF, Hill J, et al. Improvements on cardiovascular diseases risk factors in obese adolescents: a randomized exercise intervention study. *J Phys Activity*. 2015;12:553–60. <https://doi.org/10.1123/jpah.2013-0199>.

153. Weltman A, Seip RL, Snead D, Weltman JY, Haskvitz EM, Evans WS, et al. Exercise training at and above the lactate threshold in previously untrained women. *Int J Sports Med*. 1992;13:257–63. <https://doi.org/10.1055/s-2007-1021263>.

154. Gossard D, Haskell WL, Taylor CB, Mueller JK, Rogers F, Chandler M, et al. Effects of low- and high-intensity home-based exercise training on functional capacity in healthy middle-aged men. *Am J Cardiol*. 1986;57:446–9. [https://doi.org/10.1016/0002-9149\(86\)90770-8](https://doi.org/10.1016/0002-9149(86)90770-8).

155. Ehsani AA. Effects of endurance training on glucose tolerance and plasma lipid levels in older men and women. *JAMA*. 1984;252:645–9.

156. Winding KM, Munch GW, Iepsen UW, Van Hall G, Pedersen BK, Mortensen SP. The effect on glycaemic control of low-volume high-intensity interval training versus endurance training in individuals with type 2 diabetes. *Diabetes Obes Metab*. 2018;20:1131–9. <https://doi.org/10.1111/dom.13198>.

157. Hebisz R, Cortis C, Hebisz P, Borkowski J, Jastrzębska A. Effects of polarised, sprint interval, high-intensity interval, and low-intensity training programs on aerobic fitness and cardiovascular health markers in active individuals. *Hum Mov*. 2024;25:86–96. <https://doi.org/10.5114/hm/186688>.

158. Inglis EC, Iannetta D, Rasica L, Mackie MZ, Keir DA, Macinnis MJ, et al. Heavy-, severe-, and extreme-, but not moderate-intensity exercise increase $VO_{2\max}$ and thresholds after 6 wk of training. *Med Sci Sports Exerc*. 2024;56:1307–16. <https://doi.org/10.1249/MSS.0000000000003406>.

159. Helgerud J, Høydal K, Wang E, Karlsen T, Berg P, Bjerkaas M, et al. Aerobic high-intensity intervals improve $VO_{2\max}$ more than moderate training. *Med Sci Sports Exerc*. 2007;39:665–71. <https://doi.org/10.1249/mss.0b013e3180304570>.

160. Seiler S, Jøranson K, Olesen BV, Hetlelid KJ. Adaptations to aerobic interval training: interactive effects of exercise intensity and total work duration. *Scand J Med Sci Sports*. 2013;23:74–83. <https://doi.org/10.1111/j.1600-0838.2011.01351.x>.

161. Stögg T, Sperlich B. Polarized training has greater impact on key endurance variables than threshold, high intensity, or high volume training. *Front Physiol*. 2014;5:33. <https://doi.org/10.3389/fphys.2014.00033>.

162. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee I-M, et al. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. *Med Sci Sports Exerc*. 2011;43:1334–59. <https://doi.org/10.1249/MSS.0b013e318213febf>.

163. Bull FC, Al-Ansari SS, Biddle S, Borodulin K, Buman MP, Cardon G, et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. *Br J Sports Med*. 2020;54:1451–62. <https://doi.org/10.1136/bjsports-2020-102955>.

164. Egan B, Dowling P, O'Connor PL, Henry M, Meleady P, Zierath JR, et al. 2-D DIGE analysis of the mitochondrial proteome from human skeletal muscle reveals time course-dependent remodelling in response to 14 consecutive days of endurance exercise training. *Proteomics*. 2011;11:1413–28. <https://doi.org/10.1002/pmic.201000597>.

165. Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. *Cell Metabol*. 2013;17:162–84. <https://doi.org/10.1016/j.cmet.2012.12.012>.

166. Jacobs RA, Lundby C. Mitochondria express enhanced quality as well as quantity in association with aerobic fitness across recreationally active individuals up to elite athletes. *J Appl Physiol*. 2013;114:344–50. <https://doi.org/10.1152/japplphysiol.01081.2012>.

167. Wisløff U, Nilsen TIL, Drøvold WB, Mørkved S, Slørdahl SA, Vatten LJ. A single weekly bout of exercise may reduce cardiovascular mortality: how little pain for cardiac gain? ‘The HUNT study, Norway’ *Eur J Cardiovasc Prev Rehabil*. 2006;13:798–804. <https://doi.org/10.1097/01.hjr.0000216548.84560.ac>.