Sports Medicine
https://doi.org/10.1007/540279-025-02261-y

REVIEW ARTICLE t‘)

Check for
updates

Much Ado About Zone 2: A Narrative Review Assessing the Efficacy
of Zone 2 Training for Improving Mitochondrial Capacity
and Cardiorespiratory Fitness in the General Population

Kristi L. Storoschuk’® - Andres Moran-MacDonald'® - Martin J. Gibala?® - Brendon J. Gurd'

Accepted: 7 April 2025
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025

Abstract

Popular media has recently positioned Zone 2 training—defined as low-intensity exercise below the lactate threshold—as the
optimal intensity for improving mitochondrial and fatty acid oxidative capacity, thereby supporting cardiometabolic health
and chronic disease prevention. These recommendations largely stem from observational data of elite endurance athletes who
engage in large volumes of Zone 2 training and possess high mitochondrial and fatty acid oxidative capacity. However, we
challenge the broad endorsement of Zone 2 training for members of the general public, as it contradicts substantial evidence
supporting the use of high-intensity exercise for improving mitochondrial capacity and cardiometabolic health. This narra-
tive review critically examines the current evidence on Zone 2 training and mitochondrial and fatty acid oxidative capacity
outcomes to assess the appropriateness for a public recommendation. We conclude that current evidence does not support
Zone 2 training as the optimal intensity for improving mitochondrial or fatty acid oxidative capacity. Further, evidence sug-
gests prioritizing higher exercise intensities (> Zone 2) is critical to maximize cardiometabolic health benefits, particularly

in the context of lower training volumes.

Zone 2 training is touted by influential commentators
including on podcasts and in popular and social media
as the optimal training intensity for improving mito-
chondrial and fat oxidative capacity, thereby supporting
metabolic health and chronic disease prevention.

1 Introduction

Skeletal muscle mitochondrial capacity (a broad term used
to include common indices of mitochondrial content and
function) is an important determinant of metabolic health
and athletic performance [1, 2]. Mitochondrial capacity
is also linked to the capacity for glucose and fatty acid
oxidation (i.e., metabolic flexibility) [3, 4], as well as

aging [2] and the pathophysiology of insulin resistance Our review failed to uncover substantive evidence support-

[5]. Exercise prescription to enhance mitochondrial capac-
ity is generally modeled on elements of the Frequency,
Intensity, Time, and Type (FITT) principle [6]. While all
elements are important, the ‘optimal’ intensity to elicit
mitochondrial responses has emerged as a topic of con-
siderable debate.

An increasingly prominent narrative, advanced by influ-
ential health and fitness commentators including leading
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ing claims that Zone 2 is superior to higher exercise intensi-
ties for improving mitochondrial and fat oxidative capacity,
a result possibly driven by the lack of studies explicitly

examining Zone 2 training as it is commonly characterized.

Zone 2 may fall below the moderate- to vigorous-inten-
sity range recommended by physical activity guidelines,
and thus advising the general public to forgo higher exer-
cise intensities in place of Zone 2 may limit the health
benefits of exercise.

podcasters, is that Zone 2 training should be prioritized
over higher exercise intensities to optimize improvements
in mitochondrial capacity [7]. Specifically, the popular
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narrative claims “Zone 2 exercise intensity is the best at
stimulating mitochondrial function and fat oxidation” [8].
Owing to the link between mitochondria and metabolic
health, Zone 2 training is therefore purported to “play(s)
a crucial role in preventing chronic disease by improv-
ing the health and efficiency of your mitochondria” [7].
Finally, Zone 2 prescriptions shared through popular
media emphasize that exceeding Zone 2 intensity is to
be avoided to achieve the unique benefits of Zone 2 on
mitochondrial capacity [7]. Zone 2 in these contexts is
generally referred to as low- to moderate-intensity exer-
cise coinciding with: (1) the maximal rate of fat oxidation
(Fat,,,,) [9]; (2) blood lactate concentration ([BLa]) just
below the first lactate threshold (LT1;~1.7-2.0 mmol/L;
Fig. 1) [7]; and (3) the capacity to maintain a comfortable
conversation (i.e., Talk Test [10]).

Proponents of Zone 2 training (as the term is generally
defined above) commonly cite observations that high-level
endurance athletes perform large volumes of low-intensity
(i.e., Zone 2) training [11-15] and possess high mitochon-
drial and fatty acid oxidative (FAO) capacities [1]. How-
ever, conflating the training habits of endurance athletes
and the optimal exercise dose for improving mitochondrial
capacity in non-athletes may be misplaced for two reasons:
(1) endurance athletes perform high volumes of both low-
(Zone 2) and high-intensity training [12, 13, 16], mak-
ing claims of a causal relationship between low-intensity
training and mitochondrial capacity tenuous and (2) the
total training volumes undertaken by endurance athletes,
often > 20 h per week [17], are substantially greater than
physical activity targets set by public health guidelines
[18]. These caveats make it challenging to confidently
infer that Zone 2 training is optimal for eliciting improve-
ments in mitochondrial capacity, especially in populations
performing total training volumes consistent with physical
activity guidelines (i.e., ~ 150 min per week).

The advocacy for Zone 2 exercise over higher exercise
intensities to improve mitochondrial capacity, and health,
also contradicts experimental evidence and physical activ-
ity recommendations in exercise science. When compared
with an equivalent volume of moderate-intensity exercise,
high-intensity exercise (HIE) generally results in greater
mitochondrial signaling and adaptations [19, 20], cardiores-
piratory fitness (CRF) [21, 22], and other indices of cardio-
metabolic health [23, 24]. Further, the American College
of Sports Medicine (ACSM) physical activity guidelines
acknowledge that higher intensities may be required to
improve CRF [6]. We do not question the health benefits of
physical activity, which includes that done at low intensity or
characteristic of Zone 2 exercise. However, given the known
physiological and health benefits associated with HIE [25],
the general consensus in exercise science that high intensi-
ties lead to greater health and fitness outcomes [26], and
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Fig. 1 Graphical representation of the first lactate threshold [LT1]
(dashed line; [BLa]=2.0 mmol/L) and corresponding Zone 2 (shaded
region; blood lactate concentration [BLa]=~1.7-2.0 mmol/L)
derived from a graded exercise test. A Sex: female; age: 20 years;
WR e 204W; LT1: 23% WR, B Sex: female; age: 18 years;
WR i 262W; LT1: 45% WR,,. C Sex: male; age 24 years;
WR et 441W; LT1: 57% WR,,. Data obtained from our labo-
ratory during a graded cycling test. Briefly, participants A and B
began cycling at a load-less intensity followed by a step increase to
36 watts (W) for an additional 5 min and subsequent 8-W increments
every 5 min until [BLa] reached 4.0 mmol/L. Participant C’s test
began at 33% WR, and increased by 16 W every 3 min until [BLa]
reached 4.0 mmol/L. WR,: highest average 30-s average power
(W) achieved during an incremental cycling test consisting of 1-min
increases of 24 W/min until volitional fatigue beginning at 80 W

the widespread interest in Zone 2 training, a critical evalua-
tion of claims that Zone 2 training is superior for improving
mitochondrial capacity is needed.

Thus, the purpose of this narrative review is to critically
evaluate the evidence supporting the efficacy of Zone 2
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training for improving mitochondrial capacity in the gen-
eral population (i.e., non-endurance-trained individuals
who are insufficiently active or meeting physical activity
guidelines). We focus on two foundational claims regarding
Zone 2 training: (1) Zone 2 training is optimal for improving
mitochondrial capacity and (2) Zone 2 training is optimal for
improving FAO capacity. As Zone 2 training is ultimately
recommended for reducing the risk of chronic disease, we
additionally address whether Zone 2 training is optimal for
improving health and fitness.

2 Methods
2.1 Literature Search

A systematic literature search was not utilized to obtain
Zone 2 exercise studies. Articles were obtained by searching
databases using search terms related to “low-intensity exer-
cise,” “endurance training,” “continuous training,” “lactate
threshold”, “ventilatory threshold,” and “Fat,,.”. We used
additional articles from reference lists, including relevant
systematic reviews, articles shared through social media, and

relevant literature known to authors.

EEINT3

2.2 Inclusion Criteria

For the current review, because most definitions of Zone
2 place it within the moderate-intensity domain, and we
were able to find few studies that explicitly prescribed
Zone 2 exercise, we considered exercise performed at
intensities below LT1, or demonstrating physiological
responses consistent with the moderate-intensity domain
([BLa] < 2.0 mmol/L, below ventilatory threshold 1, below
Fat,,,, <45% maximum rate of oxygen consumption [V
O,max]) when assessing the evidence regarding the poten-
tial benefits of Zone 2. It is important to note that there
are many definitions of LT1 and methods for assessing
the threshold [27]. We chose the 2.0-mmol/L threshold
because it is a widely used threshold for determining LT1
[27, 28] and the definition most commonly cited within
social/popular media [7]. Studies that did not meet these
criteria were generally not included in our evaluation of
the acute responses and chronic adaptations to Zone 2
training. For the sake of brevity, we have not provided
specific detail of studies we judged to be “Zone 2 exer-
cise” within the text of our review; however, full exer-
cise prescription details for all studies discussed below
are included in Table 1 of the Electronic Supplementary
Material.

3 Defining Zone 2 Training

In a performance context, exercise intensity is divided into
three domains, moderate, heavy, and severe, each exhibit-
ing distinct physiological responses [29, 30]. Notably, this
characterization and the associated terminology differs
somewhat from the classification system commonly used in
physical activity and exercise prescription guidelines [31].
The moderate-intensity domain, typically defined as exer-
cise below LT1 [32], is characterized by a relatively high
reliance on FAO, relatively low rates of glycogen deple-
tion [33, 34], adenosine monophosphate (AMP)/adenosine
diphosphate (ADP) accumulation [35], and phosphocreatine
(PCr) breakdown [33, 36], and a mono-exponential increase
in oxygen consumption [29, 37-39]. Zone 2 training, based
on the definition provided via popular media as well as the
low-intensity training practices of endurance athletes [11,
16, 31, 40], positions Zone 2 exercise within the moderate-
intensity domain.

The upper boundary of Zone 2 (i.e., the threshold
between the moderate- and heavy-intensity domain) ranges
from~24% to 80% of VO,max depending on fitness and
training status [34, 41-44]. Exercise within Zone 2 can thus
range from an approximately four-fold resting metabolic rate
in sedentary individuals (e.g., walking at a normal pace or
cycling at — or well below — 100W) [45-47] or exceed an
approximately ten-fold resting metabolic rate in endurance
athletes (e.g., cycling at~300 watts [W] for an endurance
athlete) [46]. These data demonstrate that the absolute inten-
sities associated with Zone 2 can be vastly different between
athletes and members of the general public.

4 Does Zone 2 Training Improve
Mitochondrial Capacity?

Remodeling and expansion of the mitochondrial reticulum,
increased mitochondrial capacity, and improved main-
tenance of intracellular energy homeostasis are classic
adaptations to endurance training (ET) [48, 49]. Adaptive
responses to training in muscle are triggered by contraction-
induced increases in the AMP/ADP:adenosine triphosphate
(ATP) ratio, intramuscular calcium ([Caz+]i), reactive oxy-
gen species, and redox balance (NAD":NADH) [50] and the
subsequent activation of cellular signaling molecules that
include AMP-activated protein kinase (AMPK) and calcium/
calmodulin serine/threonine kinase (CaMKII) [51]. In the
following sections, we review the available literature exam-
ining the impact of Zone 2 exercise on mitochondrial bio-
genesis by focusing on: (1) intramuscular signals; (2) sign-
aling response and gene expression; and (3) mitochondrial
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capacity. Because long-duration low-intensity exercise has
also been proposed to act primarily via calcium signaling
[52], we also distinctly address the impact of Zone 2 training
on the calcium signaling pathway.

4.1 Impact of Zone 2 on Intramuscular Metabolites

The available evidence demonstrates minimal changes
in the muscle AMP/ADP:ATP ratio and/or indicators of
energetic stress (e.g., reduced muscle [PCr] and increased
muscle [lactate]) following Zone 2 exercise. For example,
200 min of Zone 2 exercise does not change ATP, ADP, or
AMP in muscle of untrained adults [53]. The AMP:ATP
ratios were also unaltered during and following Zone 2
exercise performed to exhaustion in young active men
[54]. However, 2 h of Zone 2 exercise can induce small but
statistically significant increases in the AMP/ADP:ATP
ratio in endurance-trained men [55].

Decreases in [PCr], driven by increases in intracellular
[ADP] [56], are sometimes absent during Zone 2 exercise
[57]. However, declines in muscle [PCr] occur following
both short (5 min) and long (120-211 min) durations of
Zone 2 exercise [33, 54, 55, 58, 59]. Small increases in mus-
cle lactate concentrations, indicative of elevated AMP/ADP
and increased rates of glycolytic flux, are sometimes [55, 59]
but not always [33, 53, 58] observed during Zone 2 exercise.
Interestingly, and consistent with classic demonstrations of
glycogen oxidation during low-intensity exercise [60, 61],
prolonged Zone 2 exercise (2-3.5 h) decreases muscle gly-
cogen [33, 53-55]. Because glycogen depletion is a mediator
of AMPK activation [62], these results raise the possibility
that Zone 2 may activate AMPK in the absence of large
increases in AMP and/or ADP.

To our knowledge, changes in cellular redox potential and
reactive oxygen species production during Zone 2 exercise
have not been reported. Thus, our understanding of intra-
muscular signals in response to Zone 2 exercise is limited to
relatively small and/or inconsistent changes in AMP/ADP,
PCer, lactate/glycolysis, and intramuscular glycogen.

4.2 Impact of Zone 2 on Mitochondrial Biogenic
Signaling and Gene Expression

The activation of AMPK in response to increased AMP/
ADP [63], and potentially reduced muscle glycogen [62],
is a primary signaling pathway involved in the initiation of
mitochondrial biogenesis [64—66]. Exercise intensities that
do not impose energetic disturbances (i.e., no change in
AMP/ADP) appear to not increase AMPK signaling [35].
Thus, the negligible-to-small changes in the AMP/ADP:ATP
ratio in response to Zone 2 exercise described above suggest
that Zone 2 exercise may be below the intensity required to

activate AMPK. In agreement with this suggestion, Zone
2 exercise does not increase AMPK activity in endurance-
trained men [55]. Zone 2 exercise also failed to alter the
phosphorylation of AMPK or class II histone deacetylases,
downstream targets of AMPK [67—69]. Conversely, although
AMPK activity was unchanged following 2 h of Zone 2, it
was elevated at exhaustion (~ 3.5 h) [54]. Interestingly, the
phosphorylation of acetyl-CoA carboxylase, another down-
stream target of AMPK, increased 1 h into Zone 2 exercise
before returning to baseline levels at later timepoints [54].
Similar increases in phosphorylation of acetyl-CoA car-
boxylase, in the absence of increased p-AMPK, were also
observed following 65 min of exercise just above Zone 2
[69].

The effect of Zone 2 exercise on PGC-1a, a downstream
target of AMPK and a key transcriptional regulator of mito-
chondrial biogenesis [64], is unclear. No change in PGC-1a
gene expression was reported following 30 min [68, 70]
and ~ 90 min [70] of Zone 2 exercise. Popov et al. also failed
to observe changes in mitochondrial transcription factor A,
mitochondrial transcription factor B2, as well as the mito-
chondrial genes citrate synthase (CS) and cytochrome C
oxidase subunit II [68]. The well-trained status (VOZmax
of 59 mL/min/kg) of participants in this study may partly
explain the absence of a mitochondrial biogenic response.
Supramaximal intensities may be required to induce mito-
chondrial adaptations in well-trained populations [71]. In
contrast, increases in PGC-1a messenger RNA expression
— and additional genes involved in mitochondrial biogen-
esis — can occur following Zone 2 exercise [67-69, 72].
Duration-mediated effects have been reported for PGC-1a
gene expression with 60 and 90 min, but not 30 min of Zone
2 increasing expression [68]. In the only report examining
the impact of Zone 2 on muscle protein synthesis we are
aware of, a single bout of exercise failed to increase rates of
mitochondrial protein synthesis [73].

Although the collective evidence is mixed (Fig. 2), Zone
2 exercise does appear capable of activating signaling path-
ways that initiate mitochondrial adaptations. However, future
research is required to further clarify the impact of Zone 2
exercise on mitochondrial signaling pathways, including
those beyond AMPK (e.g., sirtuin 1 and P38 mitogen-acti-
vated protein kinase).

4.3 Does Zone 2 Training Improve Mitochondrial
Capacity Via Calcium Signaling?

High volumes of low-intensity/Zone 2 training are pro-
posed to induce mitochondrial adaptations through calcium
signaling, while high-intensity training acts through dif-
ferential mechanisms (i.e., AMPK signaling) [11, 52, 74].
This contention appears to be based on the theory [52] that
repeated muscle contractions increase [C212+]i and activate
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mitochondrial biogenesis via CaMKII [75]. However, there
is strong evidence that HIE activates both AMPK and CaM-
KII signaling pathways [20]. Thus, while Zone 2 exercise
may activate mitochondrial adaptations primarily via CaM-
KII signaling, the idea that HIE initiates mitochondrial adap-
tations via distinct signaling pathways (i.e., only AMPK) is
not supported by available evidence.

We are unaware of studies examining changes in [Ca®*];
during or following Zone 2 exercise. There also appear
to be few studies that have measured calcium signaling
in response to Zone 2 exercise. Of the limited studies we
could find, 65-70 min of Zone 2 training failed to increase
p-CaMKII [67, 69]. However, mixed results are reported
for downstream targets of CaMKII with phosphorylation of
cyclic-AMP response element and p38 mitogen-activated
protein kinase being increased [67] and unchanged [68, 69],
respectively. Thus, it is unclear if or how Zone 2 training
acutely activates calcium signaling.

A lack of data does not disprove the contention that elite
endurance athletes benefit from high volumes of low-inten-
sity exercise via calcium-mediated adaptation [74]. How-
ever, recommendations that the general population forgo
higher intensity exercise in favor of Zone 2 appear to be
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Fig.2 Changes in intramuscular signals and mitochondrial bio-
genic signaling in response to Zone 2 exercise. Blue (yes) indicates
an increase in the indicated outcome. Red (no) indicates no change
or decrease in the indicated outcome. 'Glycogen depletion observed
with exercise > 120 min. 2Wojtaszewski et al., included for both “No”
(2 h) and “Yes” (3.5 h) [54]. 3Popov et al., included for both “No”
(30 min) and “Yes” (60 min, 90 min) [68]. ACC acetyl-CoA carboxy-
lase, ADP adenosine diphosphate, AMP adenosine monophosphate,
AMPK AMP-activated protein kinase, CaMKII calcium/calmodulin
serine/threonine kinase II, CREB cyclic AMP response element-bind-
ing protein

largely based on an unsubstantiated theory. Further research
is needed to comprehensively define the impact of Zone 2
training on calcium signaling and elucidate the importance,
if any, of calcium signaling in Zone 2-mediated mitochon-
drial adaptations in both endurance athletes and the general
population.

4.4 Does Zone 2 Training Improve Mitochondrial
Capacity?

Few studies have explicitly investigated the impact of Zone
2 training on mitochondrial outcomes and the available evi-
dence is mixed. In support of Zone 2 training improving
mitochondrial capacity, 10 weeks of twice-weekly training
at an exercise intensity corresponding to FAT, , —possibly
above Zone 2 as discussed below—increased CS activity
and mitochondrial respiration in obese individuals with type
2 diabetes mellitus [76]. Additionally, 12 weeks of Zone
2 cycling three times-weekly low-intensity cycling that is
characteristic of Zone 2 improved PCr recovery rates—a
marker of mitochondrial capacity assessed via magnetic
resonance spectroscopy—in both healthy male individuals
and male individuals with type 2 diabetes [77]. In contrast,
several studies do not support the ability of Zone 2 training
to improve mitochondrial capacity. Four weeks of Zone 2
training did not increase CS activity or mitochondrial res-
piration in recreationally active men [78]. Five months of
primarily (86% of training volume) Zone 2 training 7 days/
week also failed to improve CS activity or succinate dehy-
drogenase activity in elite endurance athletes [79]. Finally,
although exercise intensity was not confirmed with blood
lactate measures, a 42-day skiing expedition requiring 6 h/
day at ~60% maximum heart rate (HR ,,,) [a daily duration
that strongly suggests Zone 2 intensity] reduced CS activity
and mitochondrial respiration [80]. Similarly, following a
50-day ski expedition involving 5.5 h/day skiing at~45% V
O,max, increases in CS were limited to arm muscles, with
no effect observed in legs [81]. Importantly, results from a
detailed meta-analysis of exercise intensity and mitochon-
drial adaptations suggest that exercise performed below
60% maximum work rate (an intensity likely equivalent to
or above Zone 2 in most non-endurance-trained individuals)
is not expected to improve mitochondrial content or mito-
chondrial respiratory capacity [19].

4.5 Is Zone 2 Training Optimal for Improving
Mitochondrial Capacity?

Despite ongoing debate surrounding the role of intensity as a
key mediator of exercise-induced mitochondrial adaptations
[82, 83], it is well established that high-intensity interval
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training induces robust mitochondrial adaptations [25, 84,
85]. Exercise above Zone 2 results in greater changes in the
AMP/ADP:ATP ratio [35, 86], declines in [PCr] [33, 55,
58, 59], increases in intramuscular lactate, and decreases
in pH [33, 59]. Although long durations (~ 120-211 min)
of Zone 2 exercise result in glycogen depletion [33, 55],
rates of glycogen depletion increase with increasing exercise
intensity [60, 61, 87].

Downstream mitochondrial signaling pathways are also
activated to a greater extent following exercise intensities
above Zone 2 [67, 69, 88]. Some studies demonstrate that
only exercise performed above Zone 2 results in increased
AMPK activation [55, 67, 69] and mitochondrial biogenic
signaling is rapidly activated by HIE [89-91]. Furthermore,
phosphorylation of phospholamban, a downstream target
of CaMKII, does not increase following low- to moder-
ate-intensity exercise (35% and 60% VO,peak), but does
increase with HIE (85% VO,peak) [92]. Greater activation of
CaMKII also occurs in response to “all out” sprints than 50
min of continuous exercise at 70% VOzmax [89]. Compared
with Zone 2, work-matched exercise performed above Zone
2 induces greater increases in PGC-1a gene expression and
additional mitochondrial genes [70, 72]. Further, 5 months
of high-intensity, but not Zone 2 training, increases succi-
nate dehydrogenase activity in elite endurance athletes [79].

It is important to highlight that moderate-intensity con-
tinuous training (MICT) can induce improvements in mito-
chondrial capacity. For example, a recent meta-analysis
showed improvements in mitochondrial content follow-
ing ET that were only slightly less than those induced by
higher intensity interval training [71]. However, because
this meta-analysis defined ET as training conducted below
an intensity equivalent to the second ventilatory threshold
(i.e., below the severe-intensity domain), it remains unclear
whether all ET, including that characteristic of Zone 2—
or only that performed in the heavy-intensity domain (i.e.,
above Zone 2)—improves mitochondrial capacity. Results
from another meta-analysis of 56 training studies suggest
that exercise performed below 60% maximum work rate (an
intensity likely equivalent to or above Zone 2 in most non-
endurance-trained individuals) is not expected to improve
mitochondrial content or mitochondrial respiratory capac-
ity [19]. This meta-analysis also suggests that HIE (>90%
maximum work rate) and sprint interval training are most
effective for increasing mitochondrial respiratory capacity
[19, 82]. These results suggest that exercise performed above
Zone 2 may be superior for inducing mitochondrial adapta-
tions, directly contradicting the notion that Zone 2 training
is the optimal intensity for such outcomes. It may be that
the high mitochondrial capacity of elite endurance athletes
is more related to their training spent above Zone 2 rather
than their large volumes of Zone 2 training per se.

5 Does Zone 2 Training Improve Fatty Acid
Oxidative Capacity?

Increased FAO capacity is a well-established adaptation to
ET [48, 93]. Higher FAO reduces reliance on carbohydrate
metabolism [50, 94, 95], is positively associated with ath-
letic performance [96, 97], and correlates with greater cardi-
ometabolic health [46, 98]. Thus, interventions that improve
FAO capacity are of interest to athletes targeting endurance
performance and to members of the general public seeking
to prevent and/or treat cardiometabolic disease.

Zone 2 training has been positioned as the optimal inten-
sity for improving FAO capacity and cardiometabolic health.
This section first reviews studies examining the impact of
Zone 2 training on the mechanism underlying improvements
in FAO before addressing the question of whether Zone 2
training improves FAO capacity.

5.1 Impact of Zone 2 Training on Determinants
of Fatty Acid Oxidative Capacity

Improved FAO following training is related to increases in:
(1) mitochondrial capacity [97, 102]; (2) skeletal muscle
capillary density [103, 104]; (3) intramuscular triglyceride
(IMTG) storage and breakdown [105, 106]; (4) proportion
of oxidative type I muscle fibers [104, 107]; and (5) enzymes
involved in lipid metabolism and transport [97, 108, 109].
Because the impact of Zone 2 training on the induction of
mitochondrial biogenesis and changes in mitochondrial
capacity is limited (discussed in Sect. 4), any improvements
in FAO capacity in response to Zone 2 training would pre-
sumably occur through alternative mechanisms (i.e., mecha-
nisms 2-5 above).

Capillary density increases after 6 weeks of Zone 2 train-
ing in untrained non-obese men [110], whereas no change in
skeletal muscle capillary density was observed after 42 days
of large volumes of daily exercise at 60% HR,, [80]. No
change in capillary density was also observed in leg mus-
cles after 50 days of large volumes of skiing at an intensity
equivalent to Zone 2, but was found in arm muscles [81].
Importantly, a recent meta-analysis concluded that low-
intensity ET, likely encompassing Zone 2, does not increase
capillary density or the capillary-to-fiber ratio [111]. We
were unable to find studies directly investigating the impact
of Zone 2 training on IMTG breakdown. However, low-
intensity training characteristic of Zone 2 training tended
to increase intramyocellular lipid content in male individu-
als with type 2 diabetes [77], and utilization of non-plasma
fatty acid oxidation (which includes IMTGs) increased after
12 weeks of Zone 2 training in women [112] and men [113]
with obesity. We found mixed results for the impact of Zone
2 training on type I (oxidative) muscle fiber percentage, with
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one study demonstrating a positive effect (42 days of high-
volume training at 60% HRmax [80]) and another failing
to observe an effect after 6 weeks of Zone 2 training [110].
Similar to changes in capillary density, IMTGs, and fiber
distribution, the impact of Zone 2 training-mediated changes
on enzymes involved in the transport and utilization of fatty
acids is equivocal. Four weeks of Zone 2 training induced
non-significant (p =0.07) increases in resting skeletal mus-
cle lipoprotein lipase activity [114] and 42 days of training
at 60% HRmax failed to increase hydroxyacyl-CoA dehy-
drogenase (HAD) [80]. Although 50 days of large volumes
of skiing at an intensity equivalent to Zone 2 (45% VO,max)
training increased HAD in arm muscles, Zone 2 training did
not increase HAD in leg muscles [81]. Finally, 4 months of
Zone 2 training did not change the protein content of col-
lagen type I receptor (CD36), a key fatty acid transporter
[115]. Thus, although Zone 2 can improve intramuscular
determinants of FAO capacity, the literature in this area is
limited and equivocal.

5.2 Does Zone 2 Training Improve Fatty Acid
Oxidative Capacity?

Fatty acid oxidative capacity (typically calculated from
the respiratory exchange ratio) is quantified as either the
maximal rate of fatty acid oxidation (MFO) and/or the
exercise intensity associated with MFO (FAT ) [101,
116]. We were surprised to find only one study that meas-
ured rates of FAO following confirmed Zone 2 training
([BLa] <2.0 mmol/L). This study demonstrated increased
FAT,,,, and MFO in previously sedentary adults following
1 year of Zone 2 training [117]. Similarly, albeit in studies
where [BLa] was not assessed, 12 weeks of cycling at 40%
VO, max reduced the exercise respiratory exchange ratio and
increased total fat oxidation rates in men with obesity [113]
and in women with lower, but not upper, body obesity [112].
Although failing to reach significance (p =0.06), a tendency
for increased rates of fat oxidation was also observed in
healthy non-obese men following 12 weeks of training at
40% VOzmax [114]. Although maximal mitochondrial res-
piratory capacity, ex vivo quantification, and mitochondrial
content decreased, the contribution of fatty acid substrates to
maximal mitochondrial respiration increased after 42 days of
training at 60% HR,,., possibly suggesting improved FAO
capacity [80].

In addition to the above data supporting the ability of
Zone 2 and/or very low intensity training to improve FAO
capacity, there is a body of work utilizing FAT,_,, as an
anchor for exercise prescription. It is important to note that
although Zone 2 occurs at FAT,,,, in healthy active popu-
lations [118], prescribing exercise at FAT,,, in sedentary
populations may result in exercise above Zone 2 [119]. Thus,
studies prescribing exercise anchored to FAT,,, may not

necessarily support/refute effects of Zone 2 training per
se. Nonetheless, 2—12 weeks of training at FAT,  in over-
weight/obese adults increases MFO [120], increases FAT,,
[76, 120-122], and lowers the respiratory exchange ratio
during exercise [76, 123]. Similarly, 10-12 weeks of train-
ing at FAT, ., improves FAT, .. and increases fat oxidation
rates during exercise in obese men with type 2 diabetes [76]
and insulin-resistant men [121]. Thus, Zone 2 training does
appear to increase fat oxidative capacity, although increases
are likely limited to sedentary/untrained populations.

5.3 Is Zone 2 Training Optimal for Improving Fat
Oxidative Capacity?

The evidence above suggests that Zone 2 training can
increase FAO capacity in overweight, obese, and type 2
diabetic individuals. That said, this is also true of endur-
ance exercise training at intensities greater than Zone 2 [93,
124-126]. However, unlike the body of evidence supporting
exercise intensity-dependent improvements in mitochondrial
capacity, the optimal training intensity for improving FAO
capacity is less clear [116].

Regarding the mechanisms of FAO capacity besides mito-
chondrial capacity, 12 weeks of Zone 2 training, but not
higher intensity training, increases non-plasma FAO during
exercise in obese men [113], suggesting that Zone 2 training
may be superior for increasing the contribution of IMTG
to FAO during exercise. Conversely, a recent meta-analysis
revealed that only exercise intensities above 50% VO,max
are expected to increase capillarization in sedentary subjects
[111], suggesting that Zone 2 training in some individuals
may fall below the threshold for inducing increases in capil-
larization. Finally, although no direct comparisons to Zone
2 training have been made, HIE increases IMTG storage
and oxidation during submaximal exercise [127, 128] and
enzymes and proteins involved in fatty acid transport and
oxidation including CD36 [126, 129, 130], carnitine palmi-
toyl transferase-1 [126, 131], FABPpm [129, 130, 132], and
B-HAD [129, 132, 133].

Training studies comparing exercise intensities above
Zone 2 to those possibly equivalent to Zone 2 (FAT,,,
and <45% VO,max) yield equivalent effects on FAO with
some studies favoring Zone 2 training [113, 123, 134] and
others higher exercise intensities [120, 135]. Two recent
meta-analyses reported no differences in FAO capacity fol-
lowing high-intensity interval training and MICT [136], and
small, but greater improvements with high-intensity interval
training/sprint interval training compared with MICT [137]
in obese and overweight adults but not normal weight adults.
Importantly, it is likely that many of the MICT protocols
including in these meta-analyses utilized intensities above
Zone 2, highlighting the need for studies directly comparing
Zone 2 to HIE.
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An older meta-analysis demonstrating no effect of Zone
2 training on LT1—a proxy for FAO capacity [46, 118,
119] — suggests Zone 2 training may produce too minimal
of a training stimulus to improve FAO capacity in trained
individuals [138]. This meta-analysis suggests that trained
individuals require high exercise intensities to improve LT1.
At present, it remains unclear if there is an optimal exercise
prescription for improving FAO capacity, and we are una-
ware of convincing data to support the contention that Zone
2 training produces greater increases in FAO capacity than
higher exercise intensities.

6 Is Zone 2 Training Optimal for Health
and Fitness?

Proponents of Zone 2 cite improvements in mitochondrial
capacity as a main driver of improved cardiometabolic
health [7, 100]. However, although mitochondrial capacity is
linked to performance and cardiometabolic health [1-3], its
links to cardiovascular disease and all-cause mortality risk
are less established. Conversely, the evidence linking maxi-
mal aerobic capacity (VO,max; CRF) with cardiometabolic
disease and all-cause mortality risk is robust [139-145].

When impacts of Zone 2 and higher intensities of exercise
on CRF are compared in untrained populations, there is no
difference in improvements [146—153], greater improve-
ments with higher exercise intensities [113, 120, 154-156],
or only improvements with higher exercise intensities [114,
135]. Similarly, CRF only increases with training intensities
above Zone 2 in healthy active [157, 158] and trained ath-
letes [159—-161]. Furthermore, for a fixed amount of exercise,
higher exercise intensities result in greater improvements in
CREF [21, 154] and additional markers of cardiometabolic
health (e.g., glucose tolerance) [23].

It is important to note that although zone-based training
is used by athletes and coaches for optimizing performance,
governing bodies targeting health in the general public tradi-
tionally do not ascribe to zone-based exercise prescriptions
(see Coates et et al. [31] for a comprehensive summary and
comparison of many classification models). Rather, pub-
lic health exercise and physical activity recommendations
classify exercise intensities as very light, light, moderate,
vigorous, and near-maximal/maximal intensity exercise
[162, 163]. The ACSM guidelines recommend accumulat-
ing a minimum of 150 min per week of moderate-inten-
sity physical activity (3—5.9 metabolic equivalent of tasks
[METs]) [6]. Because Zone 2 exercise can represent a wide
range of relative and absolute exercise intensities (Fig. 1),
with a potential range from light to vigorous depending
on population fitness and training status, it is possible that
Zone 2 training in unfit populations could involve exercis-
ing at an intensity that fails to meet the minimum intensity

recommended by ACSM physical activity guidelines [31].
Importantly, the ACSM guidelines recognize that 150 min
per week of moderate-intensity exercise (e.g., Zone 2) may
not be sufficient for improving CRF, suggesting that exercise
intensity and/or duration be augmented when improvements
in CRF are targeted [6].

Thus, despite Zone 2 training being positioned as the
optimal exercise intensity for reducing the risk of chronic
disease via its proposed benefits on mitochondrial health
and FAO capacity [7, 100], the available evidence refutes the
use of Zone 2 training as the optimal intensity for improving
CRF—one of the strongest predictors of cardiometabolic
disease risk [141]. Further, prioritizing higher intensities
is unlikely to jeopardize mitochondrial benefits as exercise
training protocols that increase VO,max also increase mito-
chondrial and FAO capacity [41, 104, 129, 164-166]. Thus,
prioritizing HIE appears critical when designing exercise
programs to improve CRF and reduce chronic disease risk,
especially when training time is limited. Most importantly,
given the clear intensity-dependent effect of exercise on
CRF, members of the general public who replace HIE with
Zone 2 exercise may risk minimizing the benefits of exercise
on long-term health.

7 Summary and Conclusions

Evidence from acute studies demonstrates small and
inconsistent activation of mitochondrial biogenic signal-
ing following Zone 2 exercise. Further, the majority of
the available evidence argues against the ability of Zone
2 training to increase mitochondrial capacity, a fact that
refutes the current popular media narrative that Zone 2
training is optimal for mitochondrial adaptations. Left
unchecked, the recommendations for members of the
general public to prioritize Zone 2 training over higher
exercise intensities—including continuous training in the
heavy-intensity domain—Iimits potential improvements in
mitochondrial capacity gained from accumulating volumes
above Zone 2. Many gaps remain in our understanding of
whether and how mitochondria adapt to Zone 2 training
and more research directly studying the impact of Zone 2
training on mitochondrial capacity is required.

Zone 2 does appear to improve FAO capacity in
untrained populations; however, pooled analyses sug-
gest that higher exercise intensities may be favorable in
untrained and potentially required in trained individuals.
Importantly, major gaps in the literature exist, includ-
ing the mechanisms by which Zone 2 training improves
FAO and whether Zone 2 training improves FAO capacity
across populations with different training and health sta-
tus. We provide evidence that both low and high exercise
training intensities improve FAO capacity, aligning with
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converging mechanisms to explain improvements in FAO
capacity in response to different exercise intensities. Thus,
claims that Zone 2 training is optimal for improving FAO
capacity are not supported by strong evidence and it does
not appear that Zone 2 training elicits unique benefits for
FAO capacity that cannot be achieved by HIE.

A major finding of the current review is that few stud-
ies have explicitly examined the effect of Zone 2 training.
We therefore made our best attempt to include papers that
aligned with the definition of Zone 2 as exercise within
the moderate-intensity domain when writing this review.
This limitation highlights the need for studies specifically
designed to test hypotheses around Zone 2. For members
of the general public attempting to meet physical activity
guidelines, we believe prioritizing higher exercise intensi-
ties is critical to improve health [145, 167].
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