

UiPath Activities Manual

SharePoint Custom Activities Package

-custom activities-

SharePoint Custom Activities Package

2

Table of Contents
Objective ... 4

Activities ... 4

1. SharePoint Activity Scope ... 4

1.1. Description.. 4

1.2. Parameters .. 4

1.3. Test Connection .. 5

2. SharePoint.Activities.Lists .. 6

2.1. AddListItem .. 6

2.2. Get List Items ... 10

2.3. DeleteListItems ... 13

2.4. UpdateListItems.. 13

2.5. AddListItemAttachments .. 14

2.6. GetListItemAttachments ... 16

2.7. DeleteListItemAttachments .. 16

3. SharePoint.Activities.Libraries ... 17

3.1. CreateFolder ... 18

3.2. Delete .. 18

3.3. Get Children Names ... 19

3.4. Get File ... 21

3.5. Upload File ... 22

3.6. Move Item... 25

3.7. Rename Item ... 27

3.8. Check in File ... 27

3.9. Check out File ... 27

3.10. Discard check out ... 27

4. SharePoint.Activities.Users ... 28

4.1. Create Group... 28

4.2. Delete Group... 29

4.3. Add User to Group ... 29

4.4. Remove User From Group ... 30

4.5. Get User .. 30

4.6. Get All Users from Group .. 31

5. SharePoint.Activities.Permissions .. 32

SharePoint Custom Activities Package

3

5.1. Add Permission... 33

5.2. Remove Permission .. 34

5.3. Get All Permissions .. 35

6. Sign Out ... 39

7. Get Web Login User .. 39

Query Grouping .. 40

Example .. 41

Prerequisites .. 42

Observations ... 42

Technical Approach .. 43

SharePoint Custom Activities Package

4

Objective

• Provide an integration between UiPath and SharePoint that permits the usage of the key

functionalities of SharePoint that are most likely to be used in an automation.

• Allow document and folder management for Libraries.

• Allow CRUD functionalities on SharePoint Lists.

• Allow the creation/deletion of groups and the administration of the permissions assigned

to them and of the users inside.

• Grouping the queries sent to the SharePoint server (whenever possible) so that we can do

many requests in a relatively short amount of time.

Activities

1. SharePoint Activity Scope

1.1. Description

This activity will be used as a container for all the other activities in the package. Its main

purpose is to perform the authentication with the SharePoint site and to organize the queries sent

by the other SharePoint activities (whether they are grouped together, or they are sent

individually).

1.2. Parameters

• URL: The URL of the SharePoint site where we want to perform all our queries

o All the SharePoint activities contained inside will be executed at the level of this

site

SharePoint Custom Activities Package

5

• UserName & Password/SecurePassword: The credentials that should be used to

connect to the site (If the account used does not have the necessary permissions,

some of the activities will throw exceptions).

o We can now choose between providing the password either as a simple String or

as a SecureString. It is required to set the value only for one of them.

o No need to provide the credentials here when using WebLogin instance type, as

the user will be prompted to introduce them and solve the extra authentication

factors

• SharePointInstanceType: A choice between OnPremises and Online (default)
and WebLogin(uses Sharepoint PnP, for MultiFactor Authentication).

o Based on the type of SharePoint instance you have, choose the appropriate value.

o For Online SharePoint, the http traffic is now decorated in order to handle

throttling that might appear when performing too many requests too frequently.

o For SharePoint sites that have Multifactor Authentication enabled, you should

use WebLogin. It opens a popup form for the user to introduce their credentials

and waits for the second authentication factor to be solved (for example:

approving the sign in request sent in a Microsoft Authenticator app, or use a

verification code from a mobile app, etc). It remembers the set credentials for a

period of time, so the user won’t have to enter them every time, unless they

choose to (by selecting ResetCredentials parameter in the activity)

• QueryGrouping: Option which the user can enable in order to specify that all the

SharePoint queries done inside this activity scope should be executed at the end

o This option allows us to more efficiently execute many requests in a relatively

short amount of time (For example if you want to add 100 new items to a list,

you can group all the queries in order to achieve better performance)

o Observation! Using this option will only let you use the following activities

inside this Scope: AddListItem, AddPermission,

RemovePermission, AddUserToGroup, CreateGroup, DeleteGroup,

RemoveUserFromGroup.

• LoginTimeout(miliseconds): For WebLogin: the amount of time to wait for the user to

enter the credentials and finish the Multifactor Authentication. The default is 300000(5

minutes). After this time, if the login is not performed, an exception will be thrown and

the execution will end.

• ResetCredentials: For WebLogin: sign out the current user in order to enter new

credentials (in case of MFA, the user might remain logged in for some time; if we need

to log in a different user, we have to sign out the current one)

• ClientContext: an out argument of type Microsoft.SharePoint.Client.ClientContext that

can be used to send requests to the SharePoint site in Invoke Code or Invoke Method

activities.

1.3. Test Connection

A new button was added to the SharePoint Application Scope activity, that can be used to test the

connection to your SharePoint site before runtime. The button opens the “SharePoint

Connection Test” form in which the user needs to enter the credentials that they would use to

SharePoint Custom Activities Package

6

connect to SharePoint. The form opens with the default values for the fields completed from the

Activity’s settings.

Depending on the chosen Instance Type, the fields to complete differ:

• for WebLogin: Reset Credentials can be selected and the LoginTimeout can be set(no

need for Username and Password to be set here, as the user will have to introduce them)

• for Online and OnPremises: Username and Password

The SharePoint URL is mandatory regardless of the SP Instance Type

Observation! You cannot use variables in the fields here, as we are not at runtime and their

value cannot be computed

2. SharePoint.Activities.Lists

A set of activities which provide the basic CRUD functionality for a SharePoint List:

• AddListItem

• GetListItems

• DeleteListItems

• UpdateListItems

• AddListItemAttachments

• GetListItemAttachments

• DeleteListItemAttachments

2.1. AddListItem

This activity adds a single item to a SharePoint List located on the SharePoint Site specified in

the parent SharePoint Scope Activity. Since adding items to a list can be a repetitive task, this

activity can be used together with the QueryGrouping feature, in order to improve performance.

2.1.1. Parameters

• ListName: The name of the SharePoint List where we want to add the item

• PropertiesToAdd: A Dictionary<string, object> object which should contain the

values this list item should have. For each element in the dictionary, the Key is a string

which represents the internal name a field has inside the SharePoint list and the Value is

an object representing the actual value the newly added item will have inside that field.

• AddedItemID: An out argument representing the ID of the newly added item.

o If the QueryGrouping option is enabled, this argument will be null!

2.1.2. Example

A SharePoint List can have a multitude of data types so adding an item inside a list that makes

use of all these data types can be challenging. In order to understand how we can do it, let’s try

to add an item to the following list:

bookmark://_Toc17355716/
bookmark://_Toc17355717/
bookmark://_Toc17355718/

SharePoint Custom Activities Package

7

Now, let’s take a closer look at my list fields:

Inside TestList we have the following data types

This is a detailed explanation for all of them

• Title is of type Text, so it is basically a plain string

• TestNumber is a field of type Number, so in order to add a value here we will use an Int or

a double value

• TestChoice is of type Choice, so it is basically a string picked out of a predetermined set of

values. If you go to your list's settings and open the field, you will find the options there. In

my case, they are:

SharePoint Custom Activities Package

8

• TestPerson is a column which simply hold a reference to a person, so we can set it using the

Persons ID and a Microsoft.SharePoint.Client.FieldUserValue. The ID can be obtained

using the GetUserInformation activity in this package.

• TestDateTime is of type Date and Time, so we can add a value here by simply passing a

datetime formated as a string

• TestLookup is of type Lookup which is basically the way in which SharePoint implements

associations (one-to-one, one-to-many and even many-to-many) between items in different

lists. In order to add a value here, we have to pass the ID of the item we want to reference in

one of the following two ways:

o either by wrapping it inside

a Microsoft.SharePoint.Client.FieldLookupValue object like in the sample

bellow

o or by setting the value of the field to a simple string in this format: "ID of the
lookup";#"Title of the Lookup" (for example: "1;#Title" => takes the value of the
column "Title" from the item with ID = 1.)

Just go to the list your lookup column is connected to and get the ID of the list item you want

to be linked to

• TestLookup:Title is secondary column that is configured to automatically display the title

of the value being referenced in the primary lookup column. So no need to set a value here!

• TestYesNo is basically a boolean value, so we can set it by passing either true or false

• TestLink is a Hyperlink so we can set a value to this field by simply passing an url as a

string

In order to add a new item here, I will use the Add List Item activity in the following manner:

SharePoint Custom Activities Package

9

(Note that the value for TestLookup can also be set like this:)

After this workflow is executed, the following item appears in my List:

Observation!

One important thing to keep in mind is that in order to reference these fields, we must use

their Internal Name, not their title (often enough, they are not the same). In order to obtain the

internal name of a field open the list settings, click the field and look at the URL of the page,

the internal name will be there:

SharePoint Custom Activities Package

10

2.2. Get List Items

The ReadListItems activity has been renamed to Get List Items in the newest versions. This is

an activity which uses the Collaborative Application Markup Language (CAML for short) to get

a set of items from a SharePoint list, filtered on certain criteria.

CAML is complex but it is specifically designed for SharePoint so this means that we can create

very powerful and precise queries. Furthermore, we can create these queries using 3rd party tools

that generate CAML automatically, so there's no need to be an expert in order to use this activity.

A good example of such a tool is SmartCAML, which is free in the Windows

store: https://www.microsoft.com/en-us/p/smartcaml/9nn8gjpnxvfg. If you want to learn CAML

the hard way, you can check it out here: https://docs.microsoft.com/en-

us/sharepoint/dev/schema/introduction-to-collaborative-application-markup-language-caml.

This activity cannot be used with the Query Grouping feature enabled on the parent SharePoint

Scope.

2.2.1. Parameters

• ListName: The name of the SharePoint List where we want to read items from

• CAMLQuery: a string containing a valid CAML query that will be used to filter the

specified list

• Items(Dictionary Array): An out argument which will contain the returned items

filtered using the CAMLQuery. It will be an array of Dictionary<string, object> objects.

• Items(DataTable): An out argument which will contain the returned items filtered using

the CAMLQuery, in a DataTable object, for an easier read of the returned items.

Note! We have created the Dictionary to Table extension method for Dictionary<string, object>[]:

ToDataTable, so by installing this package you have access to the method that can convert any

array of (String, Object) Dictionary to a DataTable. :

public static DataTable ToDataTable(this Dictionary<string, object>[] dictionary)

2.2.2. Example

Let’s take the same list that we used for the Create List Item example and try to read some of its

items.

My list currently looks like this:

https://www.microsoft.com/en-us/p/smartcaml/9nn8gjpnxvfg
https://docs.microsoft.com/en-us/sharepoint/dev/schema/introduction-to-collaborative-application-markup-language-caml
https://docs.microsoft.com/en-us/sharepoint/dev/schema/introduction-to-collaborative-application-markup-language-caml

SharePoint Custom Activities Package

11

Let’s say that I want to extract all the items whose Title contain "new" and their TestChoice

field contains "Choice2". I will use my SmartCAML (https://www.microsoft.com/en-

us/p/smartcaml/9nn8gjpnxvfg) to quickly create these filtering options and then transfer them to

my SharePoint activity:

Query Configurations in SmartCAML

Resulting XML Query

https://www.microsoft.com/en-us/p/smartcaml/9nn8gjpnxvfg
https://www.microsoft.com/en-us/p/smartcaml/9nn8gjpnxvfg

SharePoint Custom Activities Package

12

My query added to my Read List Items activity

I'll also add a ForEach to loop through all the results and a Writeline activity that will write the

information from each item to the Output:

SharePoint Custom Activities Package

13

The output will be from the above flow will be:

2.3. DeleteListItems

This is an activity which uses the Collaborative Application Markup Language (CAML for

short) to delete a set of items from a SharePoint list, filtered on certain criteria. This activity

cannot be used with the Query Grouping feature enabled on the parent SharePoint Scope.

For an example on how to use a CAML query, read section 2.2 of this document.

2.3.1. Parameters

• ListName: The name of the SharePoint List where we want to delete items from

• CAMLQuery: a string containing a valid CAML query that will be used to filter the

specified list and retrieve the items that need to be deleted.

• AddedItemID: An out argument representing the ID of the newly added item.

o If the QueryGrouping option is enabled, this argument will be null!

• NumberOfRowsAffected: An out argument of type Int32 which will contain the

number of items deleted using the CAMLQuery.

2.4. UpdateListItems

This is an activity which uses the Collaborative Application Markup Language (CAML for

short) to select a set of items from a SharePoint list, filtered on certain criteria and then update

some of their fields using a dictionary containing all the properties to modify. This activity

cannot be used with the Query Grouping feature enabled on the parent SharePoint Scope.

2.4.1. Parameters

• ListName: The name of the SharePoint List where we want to update the items

• CAMLQuery: a string containing a valid CAML query that will be used to filter the

specified list and retrieve the items that need to be updated.

• PropertiesToAdd: A Dictionary<string, object> object which should contain the

values we want to update. For each element in the dictionary, the Key is a string which

SharePoint Custom Activities Package

14

represents the internal name a field has inside the SharePoint list and the Value is an

object representing the actual value we will use to update the items.

• AddedItemID: An out argument representing the ID of the newly added item.

o If the QueryGrouping option is enabled, this argument will be null!

• NumberOfRowsAffected: An out argument of type Int32 which will contain the

number of items updated using the CAMLQuery.

2.4.2. Example

Let’s take the same list that we used for the previous 2 examples and try to update some its items

and let’s assume that I want to change the Title of all the items that were created on January

the 28th, 2019. In this case, I will use the Created field (this is a field that is managed

internally by SharePoint which contains the date on which the item was created and which is

added automatically to all the Lists) to create the following CAML query:

CAML Query
"<Query><Where><And>" +

"<Geq><FieldRef Name='Created' /><Value Type='DateTime'>2019-01-

28T00:00:00</Value></Geq>" +

"<Leq><FieldRef Name='Created' /><Value Type='DateTime'>2019-01-

28T23:59:59</Value></Leq>" +

"</And></Where></Query>"

//basically, I want all the items older than 2019-01-28T23:59:59 and newer

than 2019-01-28T00:00:00.

Since I want to update the title, I will use the following dictionary for

the PropertiesToAdd dictionary:

CAML Query
New Dictionary(Of String, Object) From {{ "Title", "This item is now old."}}

Now, all the items from Created on that day will have the title: "This item is now old."

2.5. AddListItemAttachments
This is an activity that adds one or multiple attachments to a specified SharePoint list item

2.5.1. Parameters
1. ListName: The name of the SharePoint List for which item we want to add the

attachments

2. ListItemID: An argument of type Int which should contain the ID of the item for which

we want to add the attachments

3. Attachments: Opens the argument editor dialog, which allows us to enter the full paths

of the attachments, one by one

• AttachmentsCollection: An argument of type IEnumerable<String> which contains the

array of strings corresponding to the full paths of the attachments

Observation

SharePoint Custom Activities Package

15

We can mention attachments names both in Attachments and AttachmentsCollection and they

will all be added

2.5.2. Examples
Let’s try to add some files as attachments to the first item in “DianaList" in SharePoint.

We have to set the ListItemID to 1 (for the first item in the List).

The AttachmentsCollection parameter is set to a string[] variable. Note the strings used

to initiliaze it: they contain the path and the full name of the files to attach:

In the Arguments Editor dialog that is opened trough the Arguments parameter, we specify one

more file :

Run the workflow and notice the Attachments Properties of the List Item, before and after the

Add:

Before After

SharePoint Custom Activities Package

16

2.6. GetListItemAttachments
This is an activity which gets the attachment names from a SharePoint list item.

2.6.1. Parameters
• ListName: The name of the SharePoint List where we want to update the items

• ListItemID: An argument of type Int which should contain the ID of the item for which

we want to retrieve the Attachment Names.

• AttachmentNames: An OutArgument of type string[]. Which contains the file names of

all the attachments of the current item

Observation

In order to download the attachments, use the Get File activity and the following

URL: /Lists/{ListName}/Attachments/{Item ID}/{Attachment name}

2.7. DeleteListItemAttachments
This is an activity which deletes one or multiple attachments from a SharePoint list item.

2.7.1. Parameters
• ListName: The name of the SharePoint List for which item we want to delete the

attachments

• ListItemID: An argument of type Int which should contain the ID of the item for which

we want to delete the attachments

• Attachments: Opens the argument editor dialog, which allows us to enter the names of

the attachments as they are found in SharePoint, one by one

• AttachmentsCollection: An argument of type IEnumerable<String> which contains the

array of strings corresponding to the names of the attachments as they are found in

SharePoint

• DeletedAttachmentsNr:An out argument that returns the number of deleted attachments

Observation

We can mention attachments names both in Attachments and AttachmentsCollection and they

will all be deleted

SharePoint Custom Activities Package

17

3. SharePoint.Activities.Libraries

A set of activities which can be used for basic operations on files and folders in a SharePoint

Library:

• CreateFolder

• Delete

• GetChildrenNames

• GetFile

• UploadFile

• MoveItem

• RenameItem

• Check In File

• Check Out File

• Discard check out

These activities provide a way of handling files and folders inside a specific SharePoint Site.

Generally, we can reference these files and folders by using their relative URL.

These activities are not compatible with the QueryGrouping feature; therefore, they cannot be

used if this feature is enabled in their SharePoint Scope.

Determining the Relative URL of a resource inside a library

In order to use these activities, we need to determine the relative path of the libraries, folders and

files we want to use. Usually these paths have the following format:

/{relative site url}/{library}/{folder path inside the library}/{file name} (the relative site url is

optional)

OR

/{library}/{folder path inside the library}/{file name} if our site is the root of the site

collection

For the relative site URL and the library part you should navigate to the library page in

SharePoint and check the URL:

SharePoint Custom Activities Package

18

That means that the URL for the library is: /sales/Sales Documents/ (the relative site url is

optional)

The folder Path can be easily calculated by concatenating the names of all the folder containing

our target, starting from the top-most container and going all the way to the direct parent of our

current target and simply adding "/" between them.

Also, the path of a document/folder can be retrieved by expanding its menu and copying the link

and selecting the relative url (from the "sharepoint.com/" until the "?" and decoding it)

So, for the above example, I will get the URL: /sales/Sales Documents/Intro.docx, if I remove

the optional relative site url, I get /Sales Documents/Intro.docx.

3.1. CreateFolder

This activity adds a new folder in a library, at the specified path. It creates nested folders as well.

3.1.1. Parameters

• LibraryName: the name of the Library in which the folder will be created

• RelativeUrl: the url relative to the Library of the new folder. If one folder in the

specified URL doesn't exist, the activity creates it.

3.2. Delete

The activity can be used to delete any file or folder in a Library.

http://sharepoint.com/

SharePoint Custom Activities Package

19

3.2.1. Parameters

• Library name: The name of the library where the resource we want to delete is located

• RelativeUrl: The relative URL of the file/folder that will be deleted (relative to the

library)

3.2.2. Example

The sample bellow will delete the "Samples.docx" file from the root folder of the "Documents"

Library.

Here's the document:

And this is the code:

The Item URL relative to the library would be: “Samples.docx"

3.3. Get Children Names

The activity returns an array containing the direct children names (both folders and files) of a

specified folder.

SharePoint Custom Activities Package

20

3.3.1. Parameters

• RelativeUrl: The relative URL of the parent folder

• ChildrenNames: an OUT argument of type String[] with the children names

3.3.2. Examples

Suppose we need a list with all direct children of a specific folder in our library Sales

Documents.

The snippet bellow should do the trick. It will provide us with all the names of the items found in

the root folder of the "Sales Documents" library:

We have to create a String[] variable (in this case salesDocumentsNames) which will be the

output of our activity (as shown in the Properties panel) and will store the array of children

names.

Library folder structure Activity output

SharePoint Custom Activities Package

21

3.4. Get File

An activity that downloads a file from a specified URL into the mentioned local path.

3.4.1. Parameters

• LocalPath: Local path where the file will be saved. If it doesn't contain the name that the

file will have locally, the name the file has on SharePoint will be used

• RelativeUrl: The relative URL of the file which will be saved

3.4.2. Example

Here is a sample of using the GetFile activity to download the "Expenses.xlsx" file from the

"TestFolder" folder of the Documents library.

The snippet that does this job it would be:

SharePoint Custom Activities Package

22

\

The SharePoint Item URL is: "/Shared Documents/TestFolder/Expenses.xlsx". The local path

is my Downloads folder.

From SharePoint:

Into the local path:

3.5. Upload File

An activity that uploads a file at a specified URL in a Library, from the mentioned local path and

adds a set of field values to it.

SharePoint Custom Activities Package

23

This will upload the file in the exact path specified in the Item Url. If we don't specify the name

the file will have in SharePoint, it will be given the name it initially had locally.

3.5.1. Parameters

• LocalPath: The current local path and name of the file to upload

• RelativeUrl: The relative URL where the file will be uploaded and its name

• PropertiesToAdd: An argument of type Dictionary<string, object> that represents a

collection of values to be added to the field values of the library for the newly added

document. For each element in the dictionary, the Key is a string which represents the

internal name a field has inside the SharePoint list and the Value is an object representing

the actual value the newly added document will have inside that field.

• AllowOverwrite: Checkbox which specifies whether or not we should let the robot

override an existing file with the same Relative URL. Enabled by Default.

• CheckOutFileBeforeOverwrite: If there's already a file with the same name at the

specified SharePoint location, having this checkbox checked will tell the activity to first

check out the file before we overwrite it. Otherwise, no effect.

• CheckInFileAfterCreation: If this checkbox is checked, then the robot will attempt to

check in the file after it has been uploaded to the server. If the file is not checked out after

the upload, no effect

SharePoint Custom Activities Package

24

Observations:

• If an in-depth example is needed on how to add metadata to a Library Item, check the

example provided for the Add List Item activity.

• If the metadata needs to be edited the Update List Items Activity can be used!

• he "Require Check Out" option (located in the Versioning Section of the Library

Settings) will not let users modify files unless they are checked out. Additionally,

because of this option, any new files uploaded to be checked out by default. In order to

mitigate this setting, you can enable the properties: CheckInFileAfterCreation

and CheckOutFileBeforeOverwrite

• CheckInFileAfterCreation and CheckOutFileBeforeOverwrite will cause one extra

query to be made, so the activity will be a bit slower. Do not use them unless necessary.

3.5.2. Example

Let’s assume that my Documents library has a text field called Additional Info and another field

called Responsible where the current person that is responsible for the document is added:

Let’s try to upload a file called ExportedContractsTable.xlsx to the test folder of the Documents

Library. When we upload the document to this library, we would like to add values to both

fields filled with values, so we will add the values to the PropertiesToAdd dictionary:

Properties Dictionary
/* the FieldUserValue is initialized with the ID of the user*/

New Dictionary(Of String, Object) From {

{ "Additional_x0020_Info", "This is a short summary of the document"},

{ "Responsible", New Microsoft.SharePoint.Client.FieldUserValue() With {

.LookupId = 37 }}

}

SharePoint Custom Activities Package

25

The snippets that uploads the file will look something like this:

The Item URL is: “/Shared Documents/TestFolder"

The result will be:

3.6. Move Item

An activity that moves a file or folder from a specified URL in a Library, to another URL, either

in the same Library or another one.

In the case of folders, they will be moved along with all their contents.

3.6.1. Parameters

• RelativeUrl: The relative URL of the file/folder that will be moved

• DestinationRelativeUrl: The relative URL of the Folder/library where the file/folder

will be moved

• AllowOverwrite: Checkbox which specifies whether or not we should let the robot

override a file with the same name already located at the Destination URL. Enabled by

Default.

SharePoint Custom Activities Package

26

3.6.2. Example

Let’s assume that inside my Sales site I want to move the Sales Related Documents folder from

the Documents library to the Miscellaneous folder inside the Sales Documents library.

Folder to be moved:

Destination:

The snippet of code that achieves this:

SharePoint Custom Activities Package

27

The Source URL: //Shared Documents/Sales Related Documents and the Destination

URL: /Sales Documents/Miscellaneous.

Result:

3.7. Rename Item

An activity that changes the name of a file of folder from a specified URL in a Library.

3.7.1. Parameters

• RelativeUrl: The relative URL of the file/folder that will be renamed.

• NewName: The new name of the file/folder

3.8. Check in File

An activity that checks in a file from a specified URL. If the file is not checked out, nothing

happens.

3.8.1. Parameters

• RelativeUrl: The relative URL of the file

3.9. Check out File

An activity that checks out a file from a specified URL. If the file is already checked out, an

exception will occur.

3.9.1. Parameters

• RelativeUrl: The relative URL of the file

3.10. Discard check out

An activity that discards the check out of a file from a specified URL. If the file is not checked

out, an exception will occur.

SharePoint Custom Activities Package

28

3.10.1. Parameters

• RelativeUrl: The relative URL of the file

4. SharePoint.Activities.Users

Groups are very important in SharePoint, they can be given permissions to read/edit/create/delete

certain items, folders, lists libraries and even sites. They also have secondary purposes, serving as

mailing lists, etc. SharePoint Groups can contain users and even AD groups, thus making managing

permissions through groups very easy.

To check the current groups your Site has and their members, you should click the "Users and

Groups" link inside the Site Settings:

This package contains a set of activities which can be used in order to create and delete user

groups, as well as add and/or remove users from them:

• AddUsersToGroup

• CreateUserGroup

• RemoveGroup

• RemoveUserFromGroup

• GetUser

• GetAllUsersInsideGroup

All these activities can be used together with the QueryGrouping feature, except

GetAllUsersFromGroup and GetUserInformation.

4.1. Create Group

This is an activity that creates a group on the site referenced by the SharePoint Application

Scope.

4.1.1. Parameters

• GroupName: The name of the group we're about to create

• GroupDescription: A description for the group

SharePoint Custom Activities Package

29

4.2. Delete Group

Deletes one of the groups on your SharePoint Site.

4.2.1. Parameters

• GroupName: The name of the group we're about to delete

4.3. Add User to Group

Adds a user to a specific group. This also works with AD groups since in SharePoint they are

pretty much treated just like users are.

4.3.1. Parameters

• GroupName: The name of the group we're adding the user to

• User: The users email or "{domain}\{username}" or the name of an AD Group

4.3.2. Example

Let’s assume we want to create a group and add 2 users to it, a regular user, which we will

reference using their email address and an AD Group called Everyone.

We will add the regular user to the group by referencing their email address and the AD group by

using its name (which in this case is Everyone).

This example would look like this:

SharePoint Custom Activities Package

30

After the code above is executed on the groups page, we can find the following group:

Inside, we can find the following users:

4.4. Remove User From Group

Removes a user from a specific group. This also works for removing AD groups from inside

SharePoint groups. It is very similar to the Add User to Group activity.

An exception will be thrown if this activity tries to remove a user that is not part of the group.

4.4.1. Parameters

• GroupName: The name of the group we're removing the user from

• User: The users email or "{domain}\{username}" or the name of an AD Group that

needs to be removed from this group

4.5. Get User

This activity helps you search for a user in SharePoint and returns the users ID and full details. It

searches the user by either the email or the display name of the user.

This activity returns an exception if more than one user is found or if the search has 0 results. It

is recommended that users are searched by email address, this is far more reliable as their

First Name + Last Name combination might not be unique.

4.5.1. Parameters

• User: The email/name the user will be searched by.

SharePoint Custom Activities Package

31

• SharePointUser: An out argument of type Microsoft.SharePoint.Client.User

containing all the details of the user

• UserID: An out argument of type int containing the ID of the found user

4.6. Get All Users from Group

This activity allows you to get a list with all the users inside a SharePoint group. This is useful

whenever we want to add/remove users to a group, since it can help us reduce the number of

unnecessary queries done as well as preventing exceptions (since trying to remove a user which

does not exist in a group can cause exceptions).

Using the GetAllUsersFromGroup activity will also give us all the relevant information about the

users themselves.

This operation cannot be used if the QueryGrouping feature is enabled.

4.6.1. Parameters

• GroupName: A string containing the name of the group we want to retrieve the users for

• Result: An out argument of type List<Microsoft.SharePoint.Client.User> containing

all the users inside this group

4.6.2. Example

Let’s assume I want to display to the console all the members of the Sales group inside my Site

Collection.

If I navigate to the group's page, I will see the following members:

A workflow that retrieves the information of all these users from SharePoint and that displays it

to the console, would look like this:

SharePoint Custom Activities Package

32

The Write line would retrieve the user information in the following manner:

The result inside the console would be:

5. SharePoint.Activities.Permissions

In order to provide access to our SharePoint content, we can assign permissions to groups or

individual users at site, list/library, folder (or even item) level.

SharePoint Custom Activities Package

33

With our activities we can use all the permission levels SharePoint has:

• View Only

• Limited Access

• Read

• Contribute

• Edit

• Design

• Full Control

The following activities allow adding and removing permissions for:

• the SharePoint site itself

• a list

• a library

• or any folder inside a list/library

This is a set of activities which can be used in order to add and/or remove the permissions a

group or an user has in relation to a list or library or the current site:

• AddPermission

• RemovePermission

• GetAllPermissionsFromGroup

5.1. Add Permission

Adds a permission to specific group or user. This activity is compatible with the

QueryGrouping option.

5.1.1. Parameters

• User/Group: the name of the user or group we want to assign permissions to.

• Is User: Select it if the assignee is a user and not a group

• PermissionToGive: a dropdown that allows the user to select the permission level.

• ListName: the name of the list/library we want to assign permissions to. If this is left

empty, the permissions will be assigned to the SharePoint Site instead

• ListType: this parameter needs to be used only when interacting with the permissions of

a folder inside either a list or a library. It should be set to "Library" or "List" depending

on the type of SharePoint collection we want to interact with.

• FolderPath: the folder inside the list/library we want to assign permissions to. If this is

left empty, the permissions will be assigned directly to the list/library.

o This property can be used only if the ListName is not null

SharePoint Custom Activities Package

34

Observation:

SharePoint Online does not allow altering the permissions of the root site of a site collection,

only the sub-sites can have their permissions changed. Trying to either remove or add

permissions to the root site of a site collection will result in an exception!

5.1.2. Example

Let’s assume that I have a sub-site in my SharePoint collection dedicated to the Sales team, a

group named Sales which contains all the Sales Department employees and that I need to give

them full control on that site.

I can do that very easily using the following workflow:

Notice that the List parameter is empty since the permissions are applied directly to the site.

After I open the site's permission page, I will notice the following row:

5.2. Remove Permission

Remove all permissions a group or user has in relation to another list/library, its folder or even

the SharePoint site.

This activity is compatible with the QueryGrouping option enabled.

5.2.1. Parameters

• User/Group: the name of the user or group we want to remove permissions for.

• Is User: Select it if the deposed is an user and not a group

• ListName: the name of the list/library we want to delete permissions from. If this is left

empty, the permissions will be removed from the SharePoint Site instead

SharePoint Custom Activities Package

35

• ListType: this parameter needs to be used only when interacting with the permissions of

a folder inside either a list or a library. It should be set to "Library" or "List" depending

on the type of SharePoint collection we want to interact with.

• FolderPath: the folder inside the list/library we want to delete permissions from. If this

is left empty, the permissions will be removed directly from the list/library.

o This property can be used only if the ListName is not null

5.2.2. Example

Let’s assume that I have a list called TestList where I have a folder Sales Items that we do not

want to be accessible/visible to the users in the groups Team Site Users and Teams Site

Visitors. We can achieve that by simply removing the permissions these 2 groups have on that

folder.

The workflow that does this would look something like this:

Note that both the Remove Permission activities reference the Sales Items folder in their

FolderPath argument:

5.3. Get All Permissions

Gets all existing permissions a list/library, folder or even SharePoint Site has. This is very

helpful if the user is trying to either add or remove any permissions in a SharePoint site, since it

SharePoint Custom Activities Package

36

can help us reduce the number of unnecessary queries done as well as preventing exceptions

(since trying to remove a permission which does not exist for a group can cause exceptions).

This activity is not compatible with the QueryGrouping option enabled.

5.3.1. Parameters

• ListName: the name of the list/library we want to delete permissions from. If this is left

empty, the permissions will be removed from the SharePoint Site instead

• FolderPath: the folder inside the list/library we want to delete permissions from. If this

is left empty, the permissions will be removed directly from the list/library.

o This property can be used only if the ListName is not null

• ListType: this parameter needs to be used only when interacting with the permissions of

a folder inside either a list or a library. It should be set to "Library" or "List" depending

on the type of SharePoint collection we want to interact with.

• Result: an out argument of type List<Tuple<string,string>> which contains a full list

with all the permissions on the specified SharePoint object

o if the entity that has this permission is a user then the first value in each tuple

contains the full login name of the user (The full login name is a bit ugly but

usually has an easily identifiable format!)

o if the entity that has this permission is a group then the first value in each

tuple contains the group's name

o the second value of each tuple contains the permissions name

Observation:

 If an entity has multiple permissions, we will have a tuple for each one of them in the output

list!

5.3.2. Example

Let’s assume I want to display all the permissions my users have on the Sales Items folder in

my TestList.

Below we can see the folder:

SharePoint Custom Activities Package

37

If I navigate to folders permission page, I can see there are plenty of permissions assigned to it

(some inherited from the parent list and some assigned specifically to it, it doesn't matter, they

will all be retrieved):

Using the following workflow, I can Retrieve and display to the console all these permissions:

SharePoint Custom Activities Package

38

The arguments my Get Permissions activity will have are the following:

The Write Line will access the properties in each tuple the following way:

The console output will be:

SharePoint Custom Activities Package

39

6. Sign Out

When you need to sign out the current user, you can do so either by selecting the “Reset

Credentials” checkbox in the SharePoint Application Scope activity (which logs out the current

user before prompting a form for the user to introduce other credentials to use for login) or by

using the Sign Out activity, which signs out the current user whenever you need it.

The activity should be used only in case you are signed in to a WebLogin SharePoint

Instance! Signs out the current user! In case of Multifactor Authentication, the user might

remain logged in for some time; if we need to log in a different user, we have to sign out the

current one.

6.1. Parameters

• URL: The URL of the SharePoint site we want to sign out from

o We need it because the activity clears the cache created for the URL when the

user signed in (the cookies that keep the user logged in)

o The activity doesn’t need to be placed inside the SharePoint Application Scope,

however the URL is mandatory when it is outside a Scope activity

7. Get Web Login User

Gets the current user in case you are signed into a WebLogin SharePoint Instance. For

Multifactor Authentication, the user remains logged in for some time (unless you specifically

sign it out), so it can be useful to check what user is currently logged in, in case you might need

to sign them out.

SharePoint Custom Activities Package

40

7.1. Parameters

• URL: The URL of the SharePoint site our user is signed in

o We need it because the activity checks the cache created for the URL when the

user signed in (the cookies that keep the user logged in).If there are cookies

exist, then we have a user logged in. If not, there is no user logged in and the

activity will return a null object

o The activity doesn’t need to be placed inside the SharePoint Application Scope,

however the URL is mandatory when it is outside a Scope activity

• SharePointUser: an out argument that returns a User object if we have a user logged

in, or null otherwise

Query Grouping

The QueryGrouping option is a feature which allows the users to group up repetitive queries in

batches, so that they are processed more efficiently. Instead of simply sending each query

individually to the server and waiting for the response to be received, the scope activity just

stores all the queries and sends them after all the children activities got executed resulting in a

more efficient processing time.

However, this is only possible for the following activities: AddListItem, AddPermission,

RemovePermission, AddUserToGroup, CreateGroup, DeleteGroup, RemoveUserFromGro

up. For the rest of the activities it would either not make sense (it does not make sense to use the

Get List Items activity in an async way since it would not be able to return the items, or the

EditListItems activity since it only uses 1 query to update multiple items) or it is not possible

since some activities require multiple queries executed one after another in order to perform one

action.

As it was mentioned before, the QueryGrouping feature can be enabled by clicking the

QueryGrouping Checkbox in the SharePoint Scope Activity:

Observation:

Depending on the size of the data we might try to send to the server at once, the request might

receive the following exception: "The request message is too big. The server does not allow

messages larger than XXXXX bytes."

In order to avoid that, for queries that send a large amount of data to the server, the number of

queries inside a SharePoint Scope should be limited (a good example can be seen below).

SharePoint Custom Activities Package

41

If this feature is enabled and the user tries to add an activity that is not supported, a validation

message will appear.

Example

Let’s prepare a small example in which we need to add all the rows from an excel file to our

SharePoint list (called TestList), assuming that our file has hundreds of rows, adding them one

by one would take a lot of time so in order to speed up the creation of the list items, we will try

to add them 100 at a time.

The list we'll add everything on:

The contents of the excel file (in total 211 rows):

SharePoint Custom Activities Package

42

The full example with explanatory annotations can be found here (SharePoint Login Data

removed, of course).

SharePoinQueryGroupingTest.zip

Prerequisites

• Have access to an instance of SharePoint and an account with all the

necessary permissions. You will not be able to use this package using your credentials

to do any operations that you couldn't do on your SharePoint environment in the

browser.

• This solution might not work if your SharePoint instance is using a 3rd party Identity

Provider.

Observations

• Make sure that when you are working on a SharePoint site you use the correct URL in

the SharePoint scope and not the URL of a parent site and/or of a sub-site.

• Keep in mind that the QueryGrouping option is only available for some activities

(mentioned previously). For any activity that has Out Arguments and it is used with the

query grouping feature enabled, it will have those arguments return null.

• For all List Activities using list fields, we must reference these fields using their Internal

Name, not their title (often enough, they are not the same). In order to obtain the internal

name of a field open the list settings, click the field and look at the URL of the page, the

internal name will be there:

• If you want to assign a value to field specific field for a list item, first make sure that

field exists inside your list (otherwise create it).

• Since giving permissions to users directly is a bad practice, we only allowed the

assignation and removal of permissions to and from groups only. This package does

not allow the assignation and/or removal of permissions from users directly!

• Each time you alter the permissions of an object, you will break the inheritance of

permissions from its parent element. This means that if the permissions of the

parent are changed, the changes will not be reflected on the original element. Try to

be careful of the scope of the permissions you assign and always assign permissions to

the highest suitable scope.

SharePoint Custom Activities Package

43

• Some of the activities (GetAllUsersFromGroup, GetUser or some of the list items using

more advanced data fields) can use types and classes that are specific to the

Microsoft.SharePoint.Client if you are having issues with these types, please make sure

that this namespace is added inside the imports Tab:

• We provided plenty of detailed examples so if you're having any issues using this

package, make sure to consult the examples.

• If the metadata needs to be edited for Files, the Update List Items Activity can be used

on the parent library!

Technical Approach

This package is mainly built using the .NET Client Side Object Model (CSOM) which contains

a large number of object representing SharePoint objects which can be used in order to make

changes and retrieve information from the SharePoint site. Since CSOM is very similar for all

different types of SharePoint instances, we can use the same set of activities for both SharePoint

Online and SharePoint OnPremises.

Another advantage is that we can choose the moment we send the queries created so far to the

server, so in some cases we can group them up and send them together to the server, therefore

increasing the efficiency of the package.

Additionally, CSOM can leverage the Collaborative Application Markup Language (CAML)

which is a very powerful XML-based language that can be used to create extremely detailed and

complex queries on SharePoint Lists. These queries greatly increase the versatility of the

activities and the big advantage is that several 3rd party tools can be used to generate CAML

queries without the user having any previous knowledge of this language.

In some places, the REST API of the SharePoint instance is used in order to download and/or

upload documents in order to avoid issues regarding the size of documents.

In order for the package to offer the possibility of Multifactor Authentication Login, we are using

OfficeDevPnPCore, which is the PnP Core Component of the CSOM Library, created by

Microsoft and community members to offer CSOM extension methods for SharePoint.

Below you can find more info regarding:

1. CSOM and SharePoint REST API: https://docs.microsoft.com/en-us/sharepoint/dev/sp-

add-ins/sharepoint-net-server-csom-jsom-and-rest-api-index

https://docs.microsoft.com/en-us/sharepoint/dev/sp-add-ins/sharepoint-net-server-csom-jsom-and-rest-api-index
https://docs.microsoft.com/en-us/sharepoint/dev/sp-add-ins/sharepoint-net-server-csom-jsom-and-rest-api-index

SharePoint Custom Activities Package

44

2. CAML: https://docs.microsoft.com/en-us/sharepoint/dev/schema/collaborative-

application-markup-language-caml-schemas

3. SmartCAML (3rd party tool that can generate CAML query

syntax): https://www.microsoft.com/en-us/p/smartcaml/9nn8gjpnxvfg

4. OfficeDevPnP (https://docs.microsoft.com/en-

us/dotnet/api/officedevpnp.core?view=sharepointpnpcoreonline-2.18.1709.0)

https://docs.microsoft.com/en-us/sharepoint/dev/schema/collaborative-application-markup-language-caml-schemas
https://docs.microsoft.com/en-us/sharepoint/dev/schema/collaborative-application-markup-language-caml-schemas
https://www.microsoft.com/en-us/p/smartcaml/9nn8gjpnxvfg
https://docs.microsoft.com/en-us/dotnet/api/officedevpnp.core?view=sharepointpnpcoreonline-2.18.1709.0
https://docs.microsoft.com/en-us/dotnet/api/officedevpnp.core?view=sharepointpnpcoreonline-2.18.1709.0

