

UiPath Activities Manual
SharePoint Custom Activities Package

-custom activities-

SharePoint Custom Activities Package

2

Table of Contents
Objective ... 4

Activities ... 4

1. SharePoint Activity Scope ... 4

1.1. Description.. 5

1.2. Parameters .. 5

1.3. Test Connection .. 6

1.4. Setup guide ... 7

2. SharePoint.Activities.Lists .. 12

2.1. AddListItem .. 13

2.2. Get List Items ... 16

2.3. DeleteListItems ... 19

2.4. UpdateListItems.. 20

2.5. AddListItemAttachments.. 21

2.6. GetListItemAttachments ... 22

2.7. DeleteListItemAttachments .. 23

3. SharePoint.Activities.Libraries ... 23

Determining the Relative URL of a resource inside a library ... 24

3.1. CreateFolder ... 25

3.2. Delete .. 25

3.3. Get Children Names ... 26

3.4. Get File ... 28

3.5. Upload File ... 29

3.6. Upload Large File ... 32

3.7. Move Item... 33

3.8. Rename Item ... 35

3.9. Check in File ... 35

3.10. Check out File ... 35

3.11. Discard check out ... 35

4. SharePoint.Activities.Users ... 36

4.1. Create Group... 36

4.2. Delete Group... 37

SharePoint Custom Activities Package

3

4.3. Add User to Group ... 37

4.4. Remove User From Group ... 38

4.5. Get User .. 39

4.6. Get All Users from Group .. 39

5. SharePoint.Activities.Permissions .. 41

5.1. Add Permission... 42

5.2. Remove Permission .. 43

5.3. Get All Permissions .. 44

6. Sign Out ... 47

7. Get Web Login User .. 48

8. Get TimeZone .. 48

Query Grouping .. 48

Example .. 49

Prerequisites .. 50

Observations ... 51

Technical Approach .. 52

SharePoint Custom Activities Package

4

Objective

• Provide an integration between UiPath and SharePoint that permits the usage of the key
functionalities of SharePoint that are most likely to be used in an automation.

• Allow document and folder management for Libraries.
• Allow CRUD functionalities on SharePoint Lists.
• Allow the creation/deletion of groups and the administration of the permissions

assigned to them and of the users inside.
• Grouping the queries sent to SharePoint (whenever possible) so that we can do many

requests in a relatively short amount of time.
• Give the user the option between multiple types of Authentication: Basic Auth,

Interactive Authentication at Runtime, Azure App, SharePoint App Principals, etc.

Activities

1. SharePoint Activity Scope

SharePoint Custom Activities Package

5

1.1. Description

This activity will be used as a container for all the other activities in the package. Its main
purpose is to perform the authentication with the SharePoint site and to organize the queries
sent by the other SharePoint activities (whether they are grouped together, or they are sent
individually).

1.2. Parameters

• URL: The URL of the SharePoint site where we want to perform all our queries
o All the SharePoint activities contained inside will be executed at the level of this

site
• UserName & Password/SecurePassword: The credentials that should be used to

connect to the site
o You can choose between providing the password either as a simple String or as

a SecureString. It is required to set the value only for one of them.
o No need to provide the credentials here when using WebLogin or App-Only

login type.
• Login Mode: A choice between Online (default), OnPremises, App-Only,

WebLogin(uses Sharepoint PnP, for MultiFactor Authentication) and AzureApp.
o Based on the type of SharePoint instance you have, choose the appropriate

value.
o If the account or app used does not have the necessary permissions, some of

the activities will throw exceptions.
o Online: Basic Username and Password Authentication for SharePoint Online

instances
o OnPremises: Basic Username and Password Authentication for On-Premises

SharePoint Server instances (especially useful if you are using an older version
of SharePoint – like SharePoint 2013/2010, for example)

o WebLogin: Authentication that opens a popup form for the user to introduce
their credentials and waits for the second authentication factor to be solved
(for example: approving the sign in request sent in a Microsoft Authenticator
app, or use a verification code from a mobile app, etc). It remembers the set
credentials for a period, so the user will not have to enter them every time,
unless they choose to (by selecting ResetCredentials parameter in the activity).
Recommended only for Attended Robots

o You should use App-Only for SharePoint sites for which you are able to create
an app-only principal with tenant permissions, on which you can generate a
Client Id and Client Secret. You will use the two codes for logging in and the
credentials are no longer required!

o AzureApp is a login mode that will use an Azure App to impersonate a specific
user and perform actions on their behalf. It uses the AzureApplicationID,
AzureAppPermissions, Username and Password/SecurePassword properties.
This login mode is only available for SharePoint Online instances only.

SharePoint Custom Activities Package

6

• QueryGrouping: Option which the user can enable in order to specify that all the

SharePoint queries done inside this activity scope should be executed at the end
o This option allows us to more efficiently execute many requests in a relatively

short amount of time (For example if you want to add 100 new items to a list,
you can group all the queries in order to achieve better performance)

o Observation: Using this option will only let you use the following activities
inside this Scope: AddListItem, AddPermission, RemovePermission,
AddUserToGroup, CreateGroup, DeleteGroup, RemoveUserFromGroup.

• ClientId: The Client Id generated for your site! Use it only when connecting using an
app-only principal!

• ClientSecret: The Client Secret generated for your site! Use it only when connecting
using an app-only principal!

• LoginTimeout(miliseconds): For WebLogin: the amount of time to wait for the user to
enter the credentials and finish the Multifactor Authentication. The default is 300000(5
minutes). After this time, if the login is not performed, an exception will be thrown and
the execution will end.

• ResetCredentials: For WebLogin: sign out the current user in order to enter new
credentials (in case of MFA, the user might remain logged in for some time; if we need
to log in a different user, we have to sign out the current one)

• ClientContext: an out argument of type Microsoft.SharePoint.Client.ClientContext that
can be used to send requests to the SharePoint site in Invoke Code or Invoke Method
activities.

• PlatformType: This property can be used to specify the type of SharePoint installation
our activities are used with (either SharePoint Online or On-premises). This is relevant
since depending on the type of platform, some activities can behave in a slightly
different manner. Currently this only affects the Upload Large Files activity, but in
future versions other activities might be impacted by it, too.

• AzureAppId: Used only with the AzureApp login mode, stores the Client ID of the Azure
App

• AzureAppPermissions: Used only with the AzureApp login mode, can be used to
configure the level of access allowed with the Azure App login

1.3. Test Connection

A new button was added to the SharePoint Application Scope activity, that can be used to test
the connection to your SharePoint site before runtime. The button opens the “SharePoint
Connection Test” form in which the user needs to enter the credentials that they would use to
connect to SharePoint. The form opens with the default values for the fields completed from
the Activity’s settings.
Depending on the chosen Instance Type, the fields to complete differ:

• for WebLogin: Reset Credentials can be selected and the LoginTimeout can be set(no
need for Username and Password to be set here, as the user will have to introduce
them)

SharePoint Custom Activities Package

7

• for Online and OnPremises: Username and Password
• for App-Only: Client ID and Client Secret
• for AzureApp: : Username, Password, Azure App Id and Azure App Permissions

The SharePoint URL is mandatory regardless of the SP Instance Type
Observation: You cannot use variables in the fields here, as we are not at runtime and their
value cannot be computed

1.4. Setup guide

1.4.1. How to select the URL of your SharePoint site

Whenever we try to interact with a SharePoint entity, we first need to figure out what site that
entity belongs to, as our activities function only in the scope of the SharePoint site given by
the URL property.
So, once we have a SharePoint resource, we need to figure out what the URL of our site is. To
do that, you can simply navigate to the Homepage of the site:

Once we are on the Homepage, we should look at our URL and extract only the Root of our site.
The root is the part of the URL that remains constant, no matter what page of the site you’re
on:

In my case, I’m on the Home.aspx page which is a file in the SitePages library in my site, so I will
remove that part of the URL and keep everything before it and use that in my SharePoint Scope:

Keep in mind that if you want to use 2 SharePoint objects located on 2 different sites, using a
different SharePoint Scope Activity with a different URL is necessary for each one of the objects.

SharePoint Custom Activities Package

8

Observation: SharePoint sites can have subsites and the root of a subsite will usually look like
this {parent site root URL}/{subsite name}, this could be a bit confusing if you’re unfamiliar
with SharePoint but applying the rules described above should give you the correct root URL for
both parent and child sites.

1.4.2. Configure the App-Only Login mode

SharePoint App-Only authentication works for both Online and On-premises SharePoint
installations and it involves the creation of an app entity with a Client ID and Client Secret called
an app-only principal to which you can grant permissions to access SharePoint Sites and
resources (like Lists, Libraries, Files, Folders, Groups, etc.).
Setting one up requires Admin Access to your SharePoint and is relatively straightforward but
assigning the right permissions to your App Principal can be somewhat tricky the first time you
do it. Still, the links below should provide you with all the information you need:

• This is an in-depth guide on how an app-principal can be created:
https://docs.microsoft.com/en-us/sharepoint/dev/solution-guidance/security-apponly-
azureacs

• This cheat sheet can be used to assign permissions to an App-Principal:
https://medium.com/ng-sp/sharepoint-add-in-permission-xml-cheat-sheet-
64b87d8d7600

1.4.3. Configure the AzureApp Login mode

For SharePoint Online Instances it is possible to authenticate using an Azure App with delegated
permissions and a user account. This means that you can create an App in your Azure Active
Directory that will be allowed to perform operations on your SharePoint site on behalf of a
specific user. To use this type of login, your SharePoint Scope needs to be provided with the
App Client ID together with a Username and Password.

Setting up an Azure Active Directory App for the SharePoint activities package is largely similar
to setting up an App it for the Office365 activities or the Exchange activities in the Standard
Mail Activities package, so most of the steps are the same but some differences do exist:

1. Open you Azure Portal and go to the Azure Active Directory
2. Navigate to the App Registrations Section and click on New application

https://docs.microsoft.com/en-us/sharepoint/dev/solution-guidance/security-apponly-azureacs
https://docs.microsoft.com/en-us/sharepoint/dev/solution-guidance/security-apponly-azureacs
https://medium.com/ng-sp/sharepoint-add-in-permission-xml-cheat-sheet-64b87d8d7600
https://medium.com/ng-sp/sharepoint-add-in-permission-xml-cheat-sheet-64b87d8d7600

SharePoint Custom Activities Package

9

3. Give your App a name and choose the desired option for the supported account type.

(Single Tenant if you want the app to be used only by users in your company or
Multitenant if outside users should be able to use it too).

a. Most of the time Single Tenant should be enough for RPA purposes
b. If you’re finding it hard to decide, Azure has a section with detailed info about

these 3 options

4. In the Redirect URI section, select the Public client/native and type

“https://login.microsoftonline.com/common/oauth2/nativeclient”

5. Click Register
6. After the App is created, open the Authentication Tab and enable Public Client Flows

a.

b.

SharePoint Custom Activities Package

10

7. Once your application is created, go to the Permissions screen and click Add a
permission

8. Find the SharePoint permissions and select Delegated Permissions and then select any

of the 4 permissions: Read, Write, Manage and Full (depending on what type of access
your automation needs)

a.

b.

c.

Observation:
For performing CRUD operations on List Items or Files: Read, Write and Manage permissions
are enough. However, if you want to manage groups and permissions, you will need FullControl
permissions (which will probably mean that Admin Consent will be needed).

SharePoint Custom Activities Package

11

9. Now we should be ready to configure our SharePoint Application Scope, for that, we
need to copy the Application (client) ID:

10. Simply fill in the URL, AzureAppId, AzureAppPermissions, Username, Password and

AzureAppPermissions (make sure you select only permissions that have been given to
the Azure App)

11. (optional) An admin of you Azure tenant can grant consent for your Azure App to be

used with all users in your tenant, if that is not possible, see the next step.
12. If an Admin can’t (or most likely won’t) grant consent for the entire tenant to use this

application, you will need to manually grant consent for the account you’re about to
use. To do this, follow these steps:

a. Click on the test connection button
b. In the popup, set the Instance Type to AzureApp and fill in the Azure App ID and

the Permissions fields. Make sure they match the permissions in the property
AzureAppPermissions of the scope activity exactly!!

SharePoint Custom Activities Package

12

c. Click on Get User Consent. A popup will appear and you will have to login with

the account you will use in the SharePoint Scope. Once you’re logged in, Click
Accept.

13. Now the activity is ready to be used

2. SharePoint.Activities.Lists

A set of activities which provide the basic CRUD functionality for a SharePoint List:

• AddListItem
• GetListItems
• DeleteListItems
• UpdateListItems
• AddListItemAttachments
• GetListItemAttachments
• DeleteListItemAttachments

bookmark://_Toc17355716/
bookmark://_Toc17355717/
bookmark://_Toc17355718/

SharePoint Custom Activities Package

13

2.1. AddListItem

This activity adds a single item to a SharePoint List located on the SharePoint Site specified in
the parent SharePoint Scope Activity. Since adding items to a list can be a repetitive task, this
activity can be used together with the QueryGrouping feature, in order to improve
performance.

2.1.1. Parameters

• ListName: The name of the SharePoint List where we want to add the item
• PropertiesToAdd: A Dictionary<string, object> object which should contain the values

this list item should have. For each element in the dictionary, the Key is a string which
represents the internal name a field has inside the SharePoint list and the Value is an
object representing the actual value the newly added item will have inside that field.

• AddedItemID: An out argument representing the ID of the newly added item.

o If the QueryGrouping option is enabled, this argument will be null!

2.1.2. Example

A SharePoint List can have a multitude of data types so adding an item inside a list that makes
use of all these data types can be challenging. In order to understand how we can do it, let’s try
to add an item to the following list:

Now, let’s take a closer look at my list fields:

SharePoint Custom Activities Package

14

Inside TestList we have the following data types

This is a detailed explanation for all of them

• Title is of type Text, so it is basically a plain string
• TestNumber is a field of type Number, so in order to add a value here we will use an Int or

a double value
• TestChoice is of type Choice, so it is basically a string picked out of a predetermined set of

values. If you go to your list's settings and open the field, you will find the options there. In
my case, they are:

• TestPerson is a column which simply hold a reference to a person, so we can set it using
the Persons ID and a Microsoft.SharePoint.Client.FieldUserValue. The ID can be obtained

using the GetUserInformation activity in this package.

• TestDateTime is of type Date and Time, so we can add a value here by simply passing a
datetime formated as a string

• TestLookup is of type Lookup which is basically the way in which SharePoint implements
associations (one-to-one, one-to-many and even many-to-many) between items in
different lists. In order to add a value here, we have to pass the ID of the item we want to
reference in one of the following two ways:

o either by wrapping it inside a Microsoft.SharePoint.Client.FieldLookupValue object
like in the sample bellow

o or by setting the value of the field to a simple string in this format: "ID of the
lookup";#"Title of the Lookup" (for example: "1;#Title" => takes the value of the
column "Title" from the item with ID = 1.)

Just go to the list your lookup column is connected to and get the ID of the list item you
want to be linked to

SharePoint Custom Activities Package

15

• TestLookup:Title is secondary column that is configured to automatically display the title
of the value being referenced in the primary lookup column. So no need to set a value
here!

• TestYesNo is basically a boolean value, so we can set it by passing either true or false
• TestLink is a Hyperlink so we can set a value to this field by simply passing an url as a string

In order to add a new item here, I will use the Add List Item activity in the following manner:

(Note that the value for TestLookup can also be set like this:)

After this workflow is executed, the following item appears in my List:

SharePoint Custom Activities Package

16

Observation!

One important thing to keep in mind is that in order to reference these fields, we must use
their Internal Name, not their title (often enough, they are not the same). In order to obtain
the internal name of a field open the list settings, click the field and look at the URL of the
page, the internal name will be there:

2.2. Get List Items

The ReadListItems activity has been renamed to Get List Items in the newest versions. This is
an activity which uses the Collaborative Application Markup Language (CAML for short) to get a
set of items from a SharePoint list, filtered on certain criteria.

CAML is complex but it is specifically designed for SharePoint so this means that we can create
very powerful and precise queries. Furthermore, we can create these queries using 3rd party
tools that generate CAML automatically, so there's no need to be an expert in order to use this
activity. A good example of such a tool is SmartCAML, which is free in the Windows
store: https://www.microsoft.com/en-us/p/smartcaml/9nn8gjpnxvfg. If you want to learn
CAML the hard way, you can check it out here: https://docs.microsoft.com/en-
us/sharepoint/dev/schema/introduction-to-collaborative-application-markup-language-caml.

This activity cannot be used with the Query Grouping feature enabled on the parent SharePoint
Scope.

2.2.1. Parameters

• ListName: The name of the SharePoint List where we want to read items from
• CAMLQuery: a string containing a valid CAML query that will be used to filter the

specified list

• Items(Dictionary Array): An out argument which will contain the returned items filtered
using the CAMLQuery. It will be an array of Dictionary<string, object> objects.

• Items(DataTable): An out argument which will contain the returned items filtered using
the CAMLQuery, in a DataTable object, for an easier read of the returned items.

Note! We have created the Dictionary to Table extension method for Dictionary<string, object>[]:
ToDataTable, so by installing this package you have access to the method that can convert any array of
(String, Object) Dictionary to a DataTable. :

https://www.microsoft.com/en-us/p/smartcaml/9nn8gjpnxvfg
https://docs.microsoft.com/en-us/sharepoint/dev/schema/introduction-to-collaborative-application-markup-language-caml
https://docs.microsoft.com/en-us/sharepoint/dev/schema/introduction-to-collaborative-application-markup-language-caml

SharePoint Custom Activities Package

17

public static DataTable ToDataTable(this Dictionary<string, object>[] dictionary)

2.2.2. Example

Let’s take the same list that we used for the Create List Item example and try to read some of
its items.

My list currently looks like this:

Let’s say that I want to extract all the items whose Title contain "new" and their TestChoice
field contains "Choice2". I will use my SmartCAML (https://www.microsoft.com/en-
us/p/smartcaml/9nn8gjpnxvfg) to quickly create these filtering options and then transfer them
to my SharePoint activity:

Query Configurations in SmartCAML

Resulting XML Query

https://www.microsoft.com/en-us/p/smartcaml/9nn8gjpnxvfg
https://www.microsoft.com/en-us/p/smartcaml/9nn8gjpnxvfg

SharePoint Custom Activities Package

18

My query added to my Read List Items activity

I'll also add a ForEach to loop through all the results and a Writeline activity that will write the
information from each item to the Output:

SharePoint Custom Activities Package

19

The output will be from the above flow will be:

2.3. DeleteListItems

This is an activity which uses the Collaborative Application Markup Language (CAML for short)
to delete a set of items from a SharePoint list, filtered on certain criteria. This activity cannot be
used with the Query Grouping feature enabled on the parent SharePoint Scope.

For an example on how to use a CAML query, read section 2.2 of this document.

SharePoint Custom Activities Package

20

2.3.1. Parameters

• ListName: The name of the SharePoint List where we want to delete items from
• CAMLQuery: a string containing a valid CAML query that will be used to filter the

specified list and retrieve the items that need to be deleted.
• AddedItemID: An out argument representing the ID of the newly added item.

o If the QueryGrouping option is enabled, this argument will be null!

• NumberOfRowsAffected: An out argument of type Int32 which will contain the number
of items deleted using the CAMLQuery.

2.4. UpdateListItems

This is an activity which uses the Collaborative Application Markup Language (CAML for short)
to select a set of items from a SharePoint list, filtered on certain criteria and then update some
of their fields using a dictionary containing all the properties to modify. This activity cannot be
used with the Query Grouping feature enabled on the parent SharePoint Scope.

2.4.1. Parameters

• ListName: The name of the SharePoint List where we want to update the items
• CAMLQuery: a string containing a valid CAML query that will be used to filter the

specified list and retrieve the items that need to be updated.
• PropertiesToAdd: A Dictionary<string, object> object which should contain the values

we want to update. For each element in the dictionary, the Key is a string which

represents the internal name a field has inside the SharePoint list and the Value is an
object representing the actual value we will use to update the items.

• AddedItemID: An out argument representing the ID of the newly added item.
o If the QueryGrouping option is enabled, this argument will be null!

• NumberOfRowsAffected: An out argument of type Int32 which will contain the number
of items updated using the CAMLQuery.

2.4.2. Example

Let’s take the same list that we used for the previous 2 examples and try to update some its
items and let’s assume that I want to change the Title of all the items that were created on
January the 28th, 2019. In this case, I will use the Created field (this is a field that is managed
internally by SharePoint which contains the date on which the item was created and which is
added automatically to all the Lists) to create the following CAML query:

CAML Query

SharePoint Custom Activities Package

21

"<Query><Where><And>" +
"<Geq><FieldRef Name='Created' /><Value Type='DateTime'>2019-01-28T00:00:00</Value></Geq>" +
"<Leq><FieldRef Name='Created' /><Value Type='DateTime'>2019-01-28T23:59:59</Value></Leq>" +
"</And></Where></Query>"

//basically, I want all the items older than 2019-01-28T23:59:59 and newer than 2019-01-28T00:00:00.

Since I want to update the title, I will use the following dictionary for
the PropertiesToAdd dictionary:

CAML Query
New Dictionary(Of String, Object) From {{ "Title", "This item is now old."}}

Now, all the items from Created on that day will have the title: "This item is now old."

2.5. AddListItemAttachments
This is an activity that adds one or multiple attachments to a specified SharePoint list item
2.5.1. Parameters

1. ListName: The name of the SharePoint List for which item we want to add the
attachments
2. ListItemID: An argument of type Int which should contain the ID of the item for which
we want to add the attachments
3. Attachments: Opens the argument editor dialog, which allows us to enter the full paths
of the attachments, one by one
• AttachmentsCollection: An argument of type IEnumerable<String> which contains the
array of strings corresponding to the full paths of the attachments

Observation:
We can mention attachments names both in Attachments and AttachmentsCollection and they
will all be added

2.5.2. Examples
Let’s try to add some files as attachments to the first item in “DianaList" in SharePoint.

SharePoint Custom Activities Package

22

We have to set the ListItemID to 1 (for the first item in the List).
The AttachmentsCollection parameter is set to a string[] variable. Note the strings used
to initiliaze it: they contain the path and the full name of the files to attach:

In the Arguments Editor dialog that is opened trough the Arguments parameter, we specify one
more file :

Run the workflow and notice the Attachments Properties of the List Item, before and after the
Add:

Before After

2.6. GetListItemAttachments
This is an activity which gets the attachment names from a SharePoint list item.
2.6.1. Parameters

• ListName: The name of the SharePoint List where we want to update the items
• ListItemID: An argument of type Int which should contain the ID of the item for which
we want to retrieve the Attachment Names.

SharePoint Custom Activities Package

23

• AttachmentNames: An OutArgument of type string[]. Which contains the file names of
all the attachments of the current item

Observation:
In order to download the attachments, use the Get File activity and the following
URL: /Lists/{ListName}/Attachments/{Item ID}/{Attachment name}

2.7. DeleteListItemAttachments
This is an activity which deletes one or multiple attachments from a SharePoint list item.
2.7.1. Parameters

• ListName: The name of the SharePoint List for which item we want to delete the
attachments
• ListItemID: An argument of type Int which should contain the ID of the item for which
we want to delete the attachments
• Attachments: Opens the argument editor dialog, which allows us to enter the names of
the attachments as they are found in SharePoint, one by one
• AttachmentsCollection: An argument of type IEnumerable<String> which contains the
array of strings corresponding to the names of the attachments as they are found in
SharePoint
• DeletedAttachmentsNr:An out argument that returns the number of deleted
attachments

Observation:
We can mention attachments names both in Attachments and AttachmentsCollection and they
will all be deleted

3. SharePoint.Activities.Libraries

A set of activities which can be used for basic operations on files and folders in a SharePoint
Library:

• CreateFolder
• Delete
• GetChildrenNames
• GetFile
• UploadFile
• MoveItem
• RenameItem
• Check In File
• Check Out File
• Discard check out

SharePoint Custom Activities Package

24

These activities provide a way of handling files and folders inside a specific SharePoint Site.
Generally, we can reference these files and folders by using their relative URL.

These activities are not compatible with the QueryGrouping feature; therefore, they cannot be
used if this feature is enabled in their SharePoint Scope.

Determining the Relative URL of a resource inside a library

In order to use these activities, we need to determine the relative path of the libraries, folders
and files we want to use. Usually these paths have the following format:

/{relative site url}/{library}/{folder path inside the library}/{file name} (the relative site url is
optional)

OR

/{library}/{folder path inside the library}/{file name} if our site is the root of the site
collection

For the relative site URL and the library part you should navigate to the library page in
SharePoint and check the URL:

That means that the URL for the library is: /sales/Sales Documents/ (the relative site url is
optional)

The folder Path can be easily calculated by concatenating the names of all the folder containing
our target, starting from the top-most container and going all the way to the direct parent of
our current target and simply adding "/" between them.

Also, the path of a document/folder can be retrieved by expanding its menu and copying the
link and selecting the relative url (from the "sharepoint.com/" until the "?" and decoding it)

http://sharepoint.com/

SharePoint Custom Activities Package

25

So, for the above example, I will get the URL: /sales/Sales Documents/Intro.docx, if I remove
the optional relative site url, I get /Sales Documents/Intro.docx.

3.1. CreateFolder

This activity adds a new folder in a library, at the specified path. It creates nested folders as
well.

3.1.1. Parameters

• LibraryName: the name of the Library in which the folder will be created
• RelativeUrl: the url relative to the Library of the new folder. If one folder in the specified

URL doesn't exist, the activity creates it.
•

3.2. Delete

The activity can be used to delete any file or folder in a Library.

3.2.1. Parameters

• Library name: The name of the library where the resource we want to delete is located
• RelativeUrl: The relative URL of the file/folder that will be deleted (relative to the

library)
• AllowOperarionsOnASPXFiles: Check this box if you want to change the webpages of

the application itself (pages like Home.aspx, etc. are simply files that are stored in
special libraries that can be managed through these activities). Unless this box is
checked, deleting ASPX files will result in an exception.

3.2.2. Example

The sample bellow will delete the "Samples.docx" file from the root folder of the "Documents"
Library.

Here's the document:

SharePoint Custom Activities Package

26

And this is the code:

The Item URL relative to the library would be: “Samples.docx"

3.3. Get Children Names

The activity returns an array containing the direct children names (both folders and files) of a
specified folder.

3.3.1. Parameters

• RelativeUrl: The relative URL of the parent folder
• ChildrenNames: an OUT argument of type String[] with the children names

3.3.2. Examples

Suppose we need a list with all direct children of a specific folder in our library Sales
Documents.

SharePoint Custom Activities Package

27

The snippet bellow should do the trick. It will provide us with all the names of the items found
in the root folder of the "Sales Documents" library:

We have to create a String[] variable (in this case salesDocumentsNames) which will be the
output of our activity (as shown in the Properties panel) and will store the array of children
names.

Library folder structure Activity output

SharePoint Custom Activities Package

28

3.4. Get File

An activity that downloads a file from a specified URL into the mentioned local path.

3.4.1. Parameters

• LocalPath: Local path where the file will be saved. If it doesn't contain the name that the
file will have locally, the name the file has on SharePoint will be used

• RelativeUrl: The relative URL of the file which will be saved

3.4.2. Example

Here is a sample of using the GetFile activity to download the "Expenses.xlsx" file from the
"TestFolder" folder of the Documents library.

The snippet that does this job it would be:

SharePoint Custom Activities Package

29

\

The SharePoint Item URL is: "/Shared Documents/TestFolder/Expenses.xlsx". The local path is
my Downloads folder.

From SharePoint:

Into the local path:

3.5. Upload File

An activity that uploads a file at a specified URL in a Library, from the mentioned local path and
adds a set of field values to it.

SharePoint Custom Activities Package

30

This will upload the file in the exact path specified in the Item Url. If we don't specify the name
the file will have in SharePoint, it will be given the name it initially had locally.

If uploading bigger files is needed, use the Upload Large File activity instead.

3.5.1. Parameters

• LocalPath: The current local path and name of the file to upload
• RelativeUrl: The relative URL where the file will be uploaded and its name
• PropertiesToAdd: An argument of type Dictionary<string, object> that represents a

collection of values to be added to the field values of the library for the newly added
document. For each element in the dictionary, the Key is a string which represents the
internal name a field has inside the SharePoint list and the Value is an object
representing the actual value the newly added document will have inside that field.

• AllowOverwrite: Checkbox which specifies whether or not we should let the robot
override an existing file with the same Relative URL. Enabled by Default.

• AllowOperarionsOnASPXFiles: Check this box if you want to change the webpages of
the application itself (pages like Home.aspx, etc. are simply files that are stored in
special libraries that can be managed through these activities). Unless this box is
checked, uploading ASPX files will result in an exception.

• CheckOutFileBeforeOverwrite: If there's already a file with the same name at the
specified SharePoint location, having this checkbox checked will tell the activity to first
check out the file before we overwrite it. Otherwise, no effect.

• CheckInFileAfterCreation: If this checkbox is checked, then the robot will attempt to
check in the file after it has been uploaded to the server. If the file is not checked out
after the upload, no effect

SharePoint Custom Activities Package

31

Observation:

• If an in-depth example is needed on how to add metadata to a Library Item, check the
example provided for the Add List Item activity.

• If the metadata needs to be edited the Update List Items Activity can be used!
• he "Require Check Out" option (located in the Versioning Section of the Library

Settings) will not let users modify files unless they are checked out. Additionally,
because of this option, any new files uploaded to be checked out by default. In order
to mitigate this setting, you can enable the properties: CheckInFileAfterCreation
and CheckOutFileBeforeOverwrite

• CheckInFileAfterCreation and CheckOutFileBeforeOverwrite will cause one extra
query to be made, so the activity will be a bit slower. Do not use them unless
necessary.

3.5.2. Example

Let’s assume that my Documents library has a text field called Additional Info and another field
called Responsible where the current person that is responsible for the document is added:

Let’s try to upload a file called ExportedContractsTable.xlsx to the test folder of the Documents
Library. When we upload the document to this library, we would like to add values to both
fields filled with values, so we will add the values to the PropertiesToAdd dictionary:

Properties Dictionary
/* the FieldUserValue is initialized with the ID of the user*/
New Dictionary(Of String, Object) From {
{ "Additional_x0020_Info", "This is a short summary of the document"},

SharePoint Custom Activities Package

32

{ "Responsible", New Microsoft.SharePoint.Client.FieldUserValue() With { .LookupId = 37 }}
}

The snippets that uploads the file will look something like this:

The Item URL is: “/Shared Documents/TestFolder"

The result will be:

3.6. Upload Large File

An activity very similar to the Upload File activity, designed to upload very large files (over 100
Mb).

The parameters used by this activity are the same as with Upload File, but this activity uses a
different approach to upload files, depending on the type of SharePoint Platform and the
authentication method, so there could be small variations in the performance and error
messages depending on your instance.

Observation:

This activity currently does not support the combination of App-Only Authentication and On-
Premises SharePoint Server.

SharePoint Custom Activities Package

33

3.6.1. Parameters

• LocalPath: The current local path and name of the file to upload
• RelativeUrl: The relative URL where the file will be uploaded and its name
• PropertiesToAdd: An argument of type Dictionary<string, object> that represents a

collection of values to be added to the field values of the library for the newly added
document. For each element in the dictionary, the Key is a string which represents the
internal name a field has inside the SharePoint list and the Value is an object
representing the actual value the newly added document will have inside that field.

• AllowOverwrite: Checkbox which specifies whether we should let the robot override an
existing file with the same Relative URL. Enabled by Default.

• AllowOperarionsOnASPXFiles: Check this box if you want to change the webpages of
the application itself (pages like Home.aspx, etc. are simply files that are stored in
special libraries that can be managed through these activities). Unless this box is
checked, uploading ASPX files will result in an exception.

• CheckOutFileBeforeOverwrite: If there's already a file with the same name at the
specified SharePoint location, having this checkbox checked will tell the activity to first
check out the file before we overwrite it. Otherwise, no effect.

• CheckInFileAfterCreation: If this checkbox is checked, then the robot will attempt to
check in the file after it has been uploaded to the server. If the file is not checked out
after the upload, no effect

3.7. Move Item

An activity that moves a file or folder from a specified URL in a Library, to another URL, either in
the same Library or another one.

In the case of folders, they will be moved along with all their contents.

3.7.1. Parameters

• RelativeUrl: The relative URL of the file/folder that will be moved
• DestinationRelativeUrl: The relative URL of the Folder/library where the file/folder will

be moved
• AllowOverwrite: Checkbox which specifies whether or not we should let the robot

override a file with the same name already located at the Destination URL. Enabled by
Default.

SharePoint Custom Activities Package

34

3.7.2. Example

Let’s assume that inside my Sales site I want to move the Sales Related Documents folder from
the Documents library to the Miscellaneous folder inside the Sales Documents library.

Folder to be moved:

Destination:

The snippet of code that achieves this:

SharePoint Custom Activities Package

35

The Source URL: //Shared Documents/Sales Related Documents and the Destination
URL: /Sales Documents/Miscellaneous.

Result:

3.8. Rename Item

An activity that changes the name of a file of folder from a specified URL in a Library.

3.8.1. Parameters

• RelativeUrl: The relative URL of the file/folder that will be renamed.
• NewName: The new name of the file/folder

3.9. Check in File

An activity that checks in a file from a specified URL. If the file is not checked out, nothing
happens.

3.9.1. Parameters

• RelativeUrl: The relative URL of the file

3.10. Check out File

An activity that checks out a file from a specified URL. If the file is already checked out, an
exception will occur.

3.10.1. Parameters

• RelativeUrl: The relative URL of the file

3.11. Discard check out

SharePoint Custom Activities Package

36

An activity that discards the check out of a file from a specified URL. If the file is not checked
out, an exception will occur.

3.11.1. Parameters

• RelativeUrl: The relative URL of the file

4. SharePoint.Activities.Users

Groups are very important in SharePoint, they can be given permissions to read/edit/create/delete certain
items, folders, lists libraries and even sites. They also have secondary purposes, serving as mailing lists, etc.
SharePoint Groups can contain users and even AD groups, thus making managing permissions through groups
very easy.

To check the current groups your Site has and their members, you should click the "Users and Groups" link
inside the Site Settings:

This package contains a set of activities which can be used in order to create and delete user
groups, as well as add and/or remove users from them:

• AddUsersToGroup
• CreateUserGroup
• RemoveGroup
• RemoveUserFromGroup
• GetUser
• GetAllUsersInsideGroup

All these activities can be used together with the QueryGrouping feature, except
GetAllUsersFromGroup and GetUserInformation.

4.1. Create Group

This is an activity that creates a group on the site referenced by the SharePoint Application
Scope.

SharePoint Custom Activities Package

37

4.1.1. Parameters

• GroupName: The name of the group we're about to create
• GroupDescription: A description for the group

4.2. Delete Group

Deletes one of the groups on your SharePoint Site.

4.2.1. Parameters

• GroupName: The name of the group we're about to delete

4.3. Add User to Group

Adds a user to a specific group. This also works with AD groups since in SharePoint they are
pretty much treated just like users are.

4.3.1. Parameters

• GroupName: The name of the group we're adding the user to
• User: The users email or "{domain}\{username}" or the name of an AD Group

4.3.2. Example

Let’s assume we want to create a group and add 2 users to it, a regular user, which we will
reference using their email address and an AD Group called Everyone.

We will add the regular user to the group by referencing their email address and the AD group
by using its name (which in this case is Everyone).

This example would look like this:

SharePoint Custom Activities Package

38

After the code above is executed on the groups page, we can find the following group:

Inside, we can find the following users:

4.4. Remove User From Group

Removes a user from a specific group. This also works for removing AD groups from inside
SharePoint groups. It is very similar to the Add User to Group activity.

An exception will be thrown if this activity tries to remove a user that is not part of the group.

SharePoint Custom Activities Package

39

4.4.1. Parameters

• GroupName: The name of the group we're removing the user from
• User: The users email or "{domain}\{username}" or the name of an AD Group that needs

to be removed from this group

4.5. Get User

This activity helps you search for a user in SharePoint and returns the users ID and full details. It
searches the user by either the email or the display name of the user.

This activity returns an exception if more than one user is found or if the search has 0 results. It
is recommended that users are searched by email address, this is far more reliable as their
First Name + Last Name combination might not be unique.

4.5.1. Parameters

• User: The email/name the user will be searched by.

• SharePointUser: An out argument of type Microsoft.SharePoint.Client.User containing
all the details of the user

• UserID: An out argument of type int containing the ID of the found user

4.6. Get All Users from Group

This activity allows you to get a list with all the users inside a SharePoint group. This is useful
whenever we want to add/remove users to a group, since it can help us reduce the number of
unnecessary queries done as well as preventing exceptions (since trying to remove a user which
does not exist in a group can cause exceptions).

Using the GetAllUsersFromGroup activity will also give us all the relevant information about the
users themselves.

This operation cannot be used if the QueryGrouping feature is enabled.

4.6.1. Parameters

• GroupName: A string containing the name of the group we want to retrieve the users
for

• Result: An out argument of type List<Microsoft.SharePoint.Client.User> containing all
the users inside this group

SharePoint Custom Activities Package

40

4.6.2. Example

Let’s assume I want to display to the console all the members of the Sales group inside my Site
Collection.

If I navigate to the group's page, I will see the following members:

A workflow that retrieves the information of all these users from SharePoint and that displays it
to the console, would look like this:

The Write line would retrieve the user information in the following manner:

SharePoint Custom Activities Package

41

The result inside the console would be:

5. SharePoint.Activities.Permissions

In order to provide access to our SharePoint content, we can assign permissions to groups or
individual users at site, list/library, folder (or even item) level.

With our activities we can use all the permission levels SharePoint has:

• View Only
• Limited Access
• Read
• Contribute
• Edit
• Design
• Full Control

The following activities allow adding and removing permissions for:

• the SharePoint site itself
• a list
• a library
• or any folder inside a list/library

This is a set of activities which can be used in order to add and/or remove the permissions a
group or an user has in relation to a list or library or the current site:

• AddPermission
• RemovePermission
• GetAllPermissionsFromGroup

SharePoint Custom Activities Package

42

5.1. Add Permission

Adds a permission to specific group or user. This activity is compatible with the QueryGrouping
option.

5.1.1. Parameters

• User/Group: the name of the user or group we want to assign permissions to.
• Is User: Select it if the assignee is a user and not a group
• PermissionToGive: a dropdown that allows the user to select the permission level.
• ListName: the name of the list/library we want to assign permissions to. If this is left

empty, the permissions will be assigned to the SharePoint Site instead
• ListType: this parameter needs to be used only when interacting with the permissions of

a folder inside either a list or a library. It should be set to "Library" or "List" depending
on the type of SharePoint collection we want to interact with.

• FolderPath: the folder inside the list/library we want to assign permissions to. If this is
left empty, the permissions will be assigned directly to the list/library.

o This property can be used only if the ListName is not null

Observation:

SharePoint Online does not allow altering the permissions of the root site of a site
collection, only the sub-sites can have their permissions changed. Trying to either remove
or add permissions to the root site of a site collection will result in an exception!

5.1.2. Example

Let’s assume that I have a sub-site in my SharePoint collection dedicated to the Sales team, a
group named Sales which contains all the Sales Department employees and that I need to give
them full control on that site.

I can do that very easily using the following workflow:

SharePoint Custom Activities Package

43

Notice that the List parameter is empty since the permissions are applied directly to the site.
After I open the site's permission page, I will notice the following row:

5.2. Remove Permission

Remove all permissions a group or user has in relation to another list/library, its folder or even
the SharePoint site.

This activity is compatible with the QueryGrouping option enabled.

5.2.1. Parameters

• User/Group: the name of the user or group we want to remove permissions for.
• Is User: Select it if the deposed is an user and not a group
• ListName: the name of the list/library we want to delete permissions from. If this is left

empty, the permissions will be removed from the SharePoint Site instead
• ListType: this parameter needs to be used only when interacting with the permissions of

a folder inside either a list or a library. It should be set to "Library" or "List" depending
on the type of SharePoint collection we want to interact with.

• FolderPath: the folder inside the list/library we want to delete permissions from. If this
is left empty, the permissions will be removed directly from the list/library.

o This property can be used only if the ListName is not null

5.2.2. Example

Let’s assume that I have a list called TestList where I have a folder Sales Items that we do not
want to be accessible/visible to the users in the groups Team Site Users and Teams Site
Visitors. We can achieve that by simply removing the permissions these 2 groups have on that
folder.

The workflow that does this would look something like this:

SharePoint Custom Activities Package

44

Note that both the Remove Permission activities reference the Sales Items folder in their
FolderPath argument:

5.3. Get All Permissions

Gets all existing permissions a list/library, folder or even SharePoint Site has. This is very helpful
if the user is trying to either add or remove any permissions in a SharePoint site, since it can
help us reduce the number of unnecessary queries done as well as preventing exceptions (since
trying to remove a permission which does not exist for a group can cause exceptions).

This activity is not compatible with the QueryGrouping option enabled.

5.3.1. Parameters

• ListName: the name of the list/library we want to delete permissions from. If this is left
empty, the permissions will be removed from the SharePoint Site instead

• FolderPath: the folder inside the list/library we want to delete permissions from. If this
is left empty, the permissions will be removed directly from the list/library.

o This property can be used only if the ListName is not null

SharePoint Custom Activities Package

45

• ListType: this parameter needs to be used only when interacting with the permissions of
a folder inside either a list or a library. It should be set to "Library" or "List" depending
on the type of SharePoint collection we want to interact with.

• Result: an out argument of type List<Tuple<string,string>> which contains a full list with
all the permissions on the specified SharePoint object

o if the entity that has this permission is a user then the first value in each tuple
contains the full login name of the user (The full login name is a bit ugly but
usually has an easily identifiable format!)

o if the entity that has this permission is a group then the first value in each
tuple contains the group's name

o the second value of each tuple contains the permissions name

Observation:

 If an entity has multiple permissions, we will have a tuple for each one of them in the output
list!

5.3.2. Example

Let’s assume I want to display all the permissions my users have on the Sales Items folder in
my TestList.

Below we can see the folder:

If I navigate to folders permission page, I can see there are plenty of permissions assigned to it
(some inherited from the parent list and some assigned specifically to it, it doesn't matter, they
will all be retrieved):

SharePoint Custom Activities Package

46

Using the following workflow, I can Retrieve and display to the console all these permissions:

The arguments my Get Permissions activity will have are the following:

The Write Line will access the properties in each tuple the following way:

SharePoint Custom Activities Package

47

The console output will be:

6. Sign Out

When you need to sign out the current user, you can do so either by selecting the “Reset
Credentials” checkbox in the SharePoint Application Scope activity (which logs out the current
user before prompting a form for the user to introduce other credentials to use for login) or by
using the Sign Out activity, which signs out the current user whenever you need it.
The activity should be used only in case you are signed in to a WebLogin SharePoint Instance!
Signs out the current user! In case of Multifactor Authentication, the user might remain logged
in for some time; if we need to log in a different user, we have to sign out the current one.

6.1. Parameters

• URL: The URL of the SharePoint site we want to sign out from
o We need it because the activity clears the cache created for the URL when the

user signed in (the cookies that keep the user logged in)

SharePoint Custom Activities Package

48

o The activity doesn’t need to be placed inside the SharePoint Application Scope,
however the URL is mandatory when it is outside a Scope activity

7. Get Web Login User

Gets the current user in case you are signed into a WebLogin SharePoint Instance. For
Multifactor Authentication, the user remains logged in for some time (unless you specifically
sign it out), so it can be useful to check what user is currently logged in, in case you might need
to sign them out.

7.1. Parameters

• URL: The URL of the SharePoint site our user is signed in
o We need it because the activity checks the cache created for the URL when the

user signed in (the cookies that keep the user logged in).If there are cookies
exist, then we have a user logged in. If not, there is no user logged in and the
activity will return a null object

o The activity doesn’t need to be placed inside the SharePoint Application Scope,
however the URL is mandatory when it is outside a Scope activity

• SharePointUser: an out argument that returns a User object if we have a user logged
in, or null otherwise

8. Get TimeZone
Retrieves the Time Zone of the SharePoint site. It’s useful when processing DateTime
parameters from SharePoint as it tells the user what’s the TimeZone set for their site.

8.1. Parameters

• SharePointTimeZone: an out argument that returns a
Microsoft.SharePoint.Client.TimeZone object containing information about the site’s
TimeZone

Query Grouping

The QueryGrouping option is a feature which allows the users to group up repetitive queries in
batches, so that they are processed more efficiently. Instead of simply sending each query
individually to the server and waiting for the response to be received, the scope activity just
stores all the queries and sends them after all the children activities got executed resulting in a
more efficient processing time.

SharePoint Custom Activities Package

49

However, this is only possible for the following activities: AddListItem, AddPermission,
RemovePermission, AddUserToGroup, CreateGroup, DeleteGroup, RemoveUserFromGroup. F
or the rest of the activities it would either not make sense (it does not make sense to use the
Get List Items activity in an async way since it would not be able to return the items, or the
EditListItems activity since it only uses 1 query to update multiple items) or it is not possible
since some activities require multiple queries executed one after another in order to perform
one action.

As it was mentioned before, the QueryGrouping feature can be enabled by clicking the
QueryGrouping Checkbox in the SharePoint Scope Activity:

Observation:

Depending on the size of the data we might try to send to the server at once, the request
might receive the following exception: "The request message is too big. The server does not
allow messages larger than XXXXX bytes."

In order to avoid that, for queries that send a large amount of data to the server, the number
of queries inside a SharePoint Scope should be limited (a good example can be seen below).

If this feature is enabled and the user tries to add an activity that is not supported, a validation
message will appear.

Example

Let’s prepare a small example in which we need to add all the rows from an excel file to our
SharePoint list (called TestList), assuming that our file has hundreds of rows, adding them one
by one would take a lot of time so in order to speed up the creation of the list items, we will try
to add them 100 at a time.

The list we'll add everything on:

SharePoint Custom Activities Package

50

The contents of the excel file (in total 211 rows):

The full example with explanatory annotations can be found here (SharePoint Login Data
removed, of course).

SharePoinQueryGroupingTest.zip

Prerequisites

• Have access to an instance of SharePoint and an account with all the
necessary permissions. You will not be able to use this package using your credentials

SharePoint Custom Activities Package

51

to do any operations that you couldn't do on your SharePoint environment in the
browser.

• This solution might not work if your SharePoint instance is using a 3rd party Identity
Provider.

Observations

• Make sure that when you are working on a SharePoint site you use the correct URL in
the SharePoint scope and not the URL of a parent site and/or of a sub-site.

• Keep in mind that the QueryGrouping option is only available for some activities
(mentioned previously). For any activity that has Out Arguments and it is used with the
query grouping feature enabled, it will have those arguments return null.

• For all List Activities using list fields, we must reference these fields using their Internal
Name, not their title (often enough, they are not the same). In order to obtain the
internal name of a field open the list settings, click the field and look at the URL of the
page, the internal name will be there:

• If you want to assign a value to field specific field for a list item, first make sure that
field exists inside your list (otherwise create it).

• Since giving permissions to users directly is a bad practice, we only allowed the
assignation and removal of permissions to and from groups only. This package does
not allow the assignation and/or removal of permissions from users directly!

• Each time you alter the permissions of an object, you will break the inheritance of
permissions from its parent element. This means that if the permissions of the parent
are changed, the changes will not be reflected on the original element. Try to be
careful of the scope of the permissions you assign and always assign permissions to the
highest suitable scope.

• Some of the activities (GetAllUsersFromGroup, GetUser or some of the list items using
more advanced data fields) can use types and classes that are specific to the
Microsoft.SharePoint.Client if you are having issues with these types, please make sure
that this namespace is added inside the imports Tab:

SharePoint Custom Activities Package

52

• We provided plenty of detailed examples so if you're having any issues using this
package, make sure to consult the examples.

• If the metadata needs to be edited for Files, the Update List Items Activity can be used
on the parent library!

Technical Approach

This package is mainly built using the .NET Client Side Object Model (CSOM) which contains a
large number of object representing SharePoint objects which can be used in order to make
changes and retrieve information from the SharePoint site. Since CSOM is very similar for all
different types of SharePoint instances, we can use the same set of activities for both
SharePoint Online and SharePoint OnPremises.

Another advantage is that we can choose the moment we send the queries created so far to the
server, so in some cases we can group them up and send them together to the server, therefore
increasing the efficiency of the package.

Additionally, CSOM can leverage the Collaborative Application Markup Language (CAML) which
is a very powerful XML-based language that can be used to create extremely detailed and
complex queries on SharePoint Lists. These queries greatly increase the versatility of the
activities and the big advantage is that several 3rd party tools can be used to generate CAML
queries without the user having any previous knowledge of this language.

In some places, the REST API of the SharePoint instance is used in order to download and/or
upload documents in order to avoid issues regarding the size of documents.

In order for the package to offer the possibility of Multifactor Authentication Login, we are
using OfficeDevPnPCore, which is the PnP Core Component of the CSOM Library, created by
Microsoft and community members to offer CSOM extension methods for SharePoint.

Below you can find more info regarding:

1. CSOM and SharePoint REST API: https://docs.microsoft.com/en-us/sharepoint/dev/sp-
add-ins/sharepoint-net-server-csom-jsom-and-rest-api-index

2. CAML: https://docs.microsoft.com/en-us/sharepoint/dev/schema/collaborative-
application-markup-language-caml-schemas

3. SmartCAML (3rd party tool that can generate CAML query
syntax): https://www.microsoft.com/en-us/p/smartcaml/9nn8gjpnxvfg

4. OfficeDevPnP (https://docs.microsoft.com/en-
us/dotnet/api/officedevpnp.core?view=sharepointpnpcoreonline-2.18.1709.0)

https://docs.microsoft.com/en-us/sharepoint/dev/sp-add-ins/sharepoint-net-server-csom-jsom-and-rest-api-index
https://docs.microsoft.com/en-us/sharepoint/dev/sp-add-ins/sharepoint-net-server-csom-jsom-and-rest-api-index
https://docs.microsoft.com/en-us/sharepoint/dev/schema/collaborative-application-markup-language-caml-schemas
https://docs.microsoft.com/en-us/sharepoint/dev/schema/collaborative-application-markup-language-caml-schemas
https://www.microsoft.com/en-us/p/smartcaml/9nn8gjpnxvfg
https://docs.microsoft.com/en-us/dotnet/api/officedevpnp.core?view=sharepointpnpcoreonline-2.18.1709.0
https://docs.microsoft.com/en-us/dotnet/api/officedevpnp.core?view=sharepointpnpcoreonline-2.18.1709.0

